【題目】已知函數(shù),.
(Ⅰ)若在處取得極值,求的值;
(Ⅱ)若在區(qū)間上單調(diào)遞增, 求的取值范圍;
(Ⅲ)討論函數(shù)的零點個數(shù).
【答案】(Ⅰ);(Ⅱ);(Ⅲ)當時,函數(shù)無零點,當或時,函數(shù)有一個零點,當時,函數(shù)有兩個零點.
【解析】
試題分析:(Ⅰ)求出函數(shù)的導(dǎo)數(shù),由題意可得,即可解得,注意檢驗;(Ⅱ)由條件可得,在區(qū)間上恒成立,運用參數(shù)分離,求得右邊函數(shù)的范圍,即可得到的范圍;(Ⅲ)令,求出導(dǎo)數(shù),求出單調(diào)區(qū)間和最值,即可得到零點的個數(shù).
試題解析:(Ⅰ)因為,
由已知在處取得極值,所以.
解得,經(jīng)檢驗時,在處取得極小值.所以.…3分
(Ⅱ)由(Ⅰ)知,,.
因為在區(qū)間上單調(diào)遞增,所以在區(qū)間上恒成立.
即在區(qū)間上恒成立. 所以.
(III)因為,所以,.
令得, 令,.
.
當時,,在上單調(diào)遞增,
時,,在上單調(diào)遞減.
所以.
綜上:當時,函數(shù)無零點,
當或時,函數(shù)有一個零點,
當時,函數(shù)有兩個零點.
科目:高中數(shù)學 來源: 題型:
【題目】集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},則a的值為( )
A. 0 B. 1
C. 2 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用隨機模擬方法求得某幾何概型的概率為m,其實際概率的大小為n,則( )
A. m>n B. m<n
C. m=n D. m是n的近似值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了參加市高中籃球比賽,某中學決定從四個籃球較強的班級的籃球隊員中選出人組成男子籃球隊,代表該地區(qū)參賽,四個籃球較強的班級籃球隊員人數(shù)如下表:
班級 | 高三(7)班 | 高三(17)班 | 高二(31)班 | 高二(32)班 |
人數(shù) | 12 | 6 | 9 | 9 |
(1)現(xiàn)采取分層抽樣的方法從這四個班中抽取運動員,求應(yīng)分別從這四個班抽出的隊員人數(shù);
(2)該中學籃球隊奮力拼搏,獲得冠軍.若要從高三年級抽出的隊員中選出兩位隊員作為冠軍的代表發(fā)言,求選出的兩名隊員來自同一班的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若在區(qū)間上存在不相等的實數(shù),使成立,求的取值范圍;
(Ⅲ)若函數(shù)有兩個不同的極值點,,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有兩個分類變量X與Y的一組數(shù)據(jù),由其列聯(lián)表計算得k≈4.523,則認為“X與Y有關(guān)系”犯錯誤的概率為( )
A. 95% B. 90% C. 5% D. 10%
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了普及環(huán)保知識增強環(huán)保意識,某校從理工類專業(yè)甲班抽取60人,從文史類乙班抽取50人參加環(huán)保知識測試.
(1)根據(jù)題目條件完成下面2×2列聯(lián)表,并據(jù)此判斷你是否有99%的把握認為環(huán)保知識與專業(yè)有關(guān)?
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | |||
乙班 | 30 | ||
總計 | 60 |
(2)為參加上級舉辦的環(huán)保知識競賽,學校舉辦預(yù)選賽,預(yù)選賽答卷滿分100分,優(yōu)秀的同學得60分以上通過預(yù)選,非優(yōu)秀的同學得80分以上通過預(yù)選,若每位同學得60分以上的概率為,得80分以上的概率為,現(xiàn)已知甲班有3人參加預(yù)選賽,其中1人為優(yōu)秀學生,若隨機變量X表示甲班通過預(yù)選的人數(shù),
求X的分布列及期望E(X).
附: , n=a+b+c+d
P(K2>k0) | 0.100 | 0.050 | 0.025 | 0.010[ | 0.005 |
k0 | 2.706 | 3.84 | 5.02 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x(°C) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
(1)請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程(其中已計算出);
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)(選取的檢驗數(shù)據(jù)是12月1日與12月5日的兩組數(shù)據(jù))的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com