(12分)某公司生產一種電子儀器的固定成本為20000元,每生產一臺儀器需增加投入100元,已知總收益滿足函數(shù): ,其中是儀器的月產量
(1)將利潤表示為月產量的函數(shù)
(2)當月產量為何值時,公司所獲利潤最大?最大利潤是多少元?(總收益=總成本+利潤)

(1)
(2)當月產量為300臺時,公司獲利潤最大,最大利潤為25000元

解析試題分析:(1)當時,
=


所以所求。                              ……6分
(2)當
,
所以當時,,


所以當時,.
答:當月產量為300臺時,公司獲利潤最大,最大利潤為25000元.                   ……12分
考點:本小題主要考查分段函數(shù),二次函數(shù)在實際問題中的應用.
點評:解決實際應用題,首先要仔細讀題,從實際問題中抽象出數(shù)學問題,進而用熟悉的數(shù)學知識求解即可,另外,解決實際問題時,不要忘記實際問題限制的定義域.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某商場銷售某種商品的經驗表明,該商品每日的銷售量y (單位:千克)與銷售價格 (單位:元/千克)滿足關系式y+10(x-6)2,其中3<x<6,a為常數(shù).已知銷售價格為5元/千克時,每日可售出該商品11千克.
(1)求a的值;
(2)若該商品的成品為3元/千克, 試確定銷售價格x的值, 使商場每日銷售該商品所獲得的利潤最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知甲、乙兩個工廠在今年的1月份的利潤都是6萬,且乙廠在2月份的利潤是8萬元.若甲、乙兩個工廠的利潤(萬元)與月份x之間的函數(shù)關系式分別符合下列函數(shù)模型:f(x)=a1x2—4x+6,g(x)=a2b2(a1a2,b2∈R).
(1)求函數(shù)f(x)與g(x)的解析式;
(2)求甲、乙兩個工廠今年5月份的利潤;
(3)在同一直角坐標系下畫出函數(shù)f(x)與g(x)的草圖,并根據(jù)草圖比較今年1—10月份甲、乙兩個工廠的利潤的大小情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
有甲、乙兩種商品,經營銷售這兩種商品所能獲得的利潤依次是(萬元)和(萬元),它們與投入資金(萬元)的關系有經驗公式:。今有3萬元資金投入經營甲、乙兩種商品,為獲得最大利潤,對甲、乙兩種商品的資金投入分別應為多少?能獲得最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(10分)為了預防流感,某學校對教室用藥熏消毒法進行消毒。已知藥物釋放過程中,室內每立方米空氣中的含藥量y(毫克)與時間t(小時)成正比;藥物釋放完畢后,y與t的函數(shù)關系式為,如圖所示。

(1)請寫出從藥物釋放開始,每立方米空氣中的含藥量y(毫克)與時間t(小時)之間的函數(shù)關系式;
(2)據(jù)測定,當空氣中每立方米的含藥量降低到0.25毫克以下時,學生方可進教室。那么,從藥物釋放開始,至少需要經過多少小時后,學生才能回到教室。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題共8分)
提高二環(huán)路的車輛通行能力可有效改善整個城區(qū)的交通狀況,在一般情況下,二環(huán)路上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù)。當二環(huán)路上的車流密度達到600輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過60輛/千米時,車流速度為80千米/小時,研究表明:當60≤x≤600時,車流速度v是車流密度x的一次函數(shù)。
(Ⅰ)當0≤x≤600時,求函數(shù)f(x)的表達式;
(Ⅱ)當車流密度x為多大時,車流量(單位時間內通過二環(huán)路上某觀測點的車輛數(shù),單位:輛/小時)f(x)=x·v(x)可以達到最大,并求出最大值。(精確到1輛/小時)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知函數(shù),其中
(Ⅰ)求上的單調區(qū)間;
(Ⅱ)求為自然對數(shù)的底數(shù))上的最大值;
(III)對任意給定的正實數(shù),曲線上是否存在兩點、,使得是以原點為直角頂點的直角三角形,且此三角形斜邊中點在軸上?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
某網店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(滿分12分)
已知二次函數(shù)滿足:,且
解集為
(1)求的解析式;
(2)設,若上的最小值為-4,求的值.

查看答案和解析>>

同步練習冊答案