【題目】造紙術(shù)是我國(guó)古代四大發(fā)明之一,紙張的規(guī)格是指紙張制成后,經(jīng)過(guò)修整切邊,裁成一定的尺寸.現(xiàn)在我國(guó)采用國(guó)際標(biāo)準(zhǔn),規(guī)定以、;、、、等標(biāo)記來(lái)表示紙張的幅面規(guī)格.復(fù)印紙幅面規(guī)格只采用系列和系列,共中系列的幅面規(guī)格為:①規(guī)格的紙張的幅寬(表示)和長(zhǎng)度(表示)的比例關(guān)系為;②將紙張沿長(zhǎng)度方向?qū)﹂_成兩等分,便成為規(guī)格,紙張沿長(zhǎng)度方向?qū)﹂_成兩等分,便成為規(guī)格,,如此對(duì)開至規(guī)格.現(xiàn)有、、、紙各一張.若紙的面積為.則這9張紙的面積之和等于__________

【答案】

【解析】

根據(jù)題意,求出紙張的長(zhǎng)度和寬度,構(gòu)造紙張面積的等比數(shù)列,利用等比數(shù)列前項(xiàng)和的計(jì)算公式,即可求得.

由題可設(shè),紙的面積為,

根據(jù)題意,紙張面積是首項(xiàng)為,公比為的等比數(shù)列,

則容易知紙張的面積為,故可得

故紙張面積是一個(gè)首項(xiàng)為,公比為的等比數(shù)列,

張紙的面積之和為.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線與直線lykx1無(wú)交點(diǎn),設(shè)點(diǎn)P為直線l上的動(dòng)點(diǎn),過(guò)P作拋物線C的兩條切線,A,B為切點(diǎn).

1)證明:直線AB恒過(guò)定點(diǎn)Q;

2)試求PAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為為參數(shù)),直線l的參數(shù)方程為t為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,射線m

1)求Cl的極坐標(biāo)方程;

2)設(shè)mCl分別交于異于原點(diǎn)的A,B兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過(guò)許多有創(chuàng)意的求法,如著名的普豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過(guò)設(shè)計(jì)下面的實(shí)驗(yàn)來(lái)估計(jì)的值:先請(qǐng)120名同學(xué)每人隨機(jī)寫下一個(gè)xy都小于1的正實(shí)數(shù)對(duì),再統(tǒng)計(jì)其中x,y能與1構(gòu)成鈍角三角形三邊的數(shù)對(duì)的個(gè)數(shù)m,最后根據(jù)統(tǒng)計(jì)個(gè)數(shù)m估計(jì)的值.如果統(tǒng)計(jì)結(jié)果是,那么可以估計(jì)的值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為提高產(chǎn)品質(zhì)量,某企業(yè)質(zhì)量管理部門經(jīng)常不定期地抽查產(chǎn)品進(jìn)行檢測(cè),現(xiàn)在某條生產(chǎn)線上隨機(jī)抽取100個(gè)產(chǎn)品進(jìn)行相關(guān)數(shù)據(jù)的對(duì)比,并對(duì)每個(gè)產(chǎn)品進(jìn)行綜合評(píng)分(滿分100分),將每個(gè)產(chǎn)品所得的綜合評(píng)分制成如圖所示的頻率分布直方圖.記綜合評(píng)分為80分及以上的產(chǎn)品為一等品.

1)求圖中的值,并求綜合評(píng)分的中位數(shù);

2)用樣本估計(jì)總體,以頻率作為概率,按分層抽樣的思想,先在該條生產(chǎn)線中隨機(jī)抽取5個(gè)產(chǎn)品,再?gòu)倪@5個(gè)產(chǎn)品中隨機(jī)抽取2個(gè)產(chǎn)品記錄有關(guān)數(shù)據(jù),求這2個(gè)產(chǎn)品中恰有一個(gè)一等品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】天文學(xué)中為了衡量星星的明暗程度,古希臘天文學(xué)家喜帕恰斯(,又名依巴谷)在公元前二世紀(jì)首先提出了星等這個(gè)概念.星等的數(shù)值越小,星星就越亮;星等的數(shù)值越大,它的光就越暗.到了1850年,由于光度計(jì)在天體光度測(cè)量中的應(yīng)用,英國(guó)天文學(xué)家普森()又提出了衡量天體明暗程度的亮度的概念.天體的明暗程度可以用星等或亮度來(lái)描述.兩顆星的星等與亮度滿足.其中星等為的星的亮度為.已知心宿二的星等是1.00.“天津四的星等是1.25.“心宿二的亮度是天津四倍,則與最接近的是(當(dāng)較小時(shí), )

A.1.24B.1.25C.1.26D.1.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(其中為參數(shù),且,在以為極點(diǎn)、軸的非負(fù)半軸為極軸的極坐標(biāo)系(兩種坐標(biāo)系取相同的單位長(zhǎng)度)中,曲線的極坐標(biāo)方程為,設(shè)直線經(jīng)過(guò)定點(diǎn),且與曲線交于、兩點(diǎn).

(Ⅰ)求點(diǎn)的直角坐標(biāo)及曲線的直角坐標(biāo)方程;

(Ⅱ)求證:不論為何值時(shí),為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:橢圓的離心率為,且,過(guò)左焦點(diǎn)作一條直線交橢圓于兩點(diǎn),過(guò)線段的中點(diǎn)的垂線交軸于點(diǎn).

1)求橢圓方程;

2)當(dāng)面積最大時(shí),求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求曲線的普通方程和的直角坐標(biāo)方程;

2)過(guò)點(diǎn)作傾斜角為的直線兩點(diǎn),過(guò)作與平行的直線點(diǎn),若,求

查看答案和解析>>

同步練習(xí)冊(cè)答案