若二次函數(shù)y=ax2+bx+c的圖象與x軸交于A(-2,0),B(4,0),且函數(shù)的最大值為9,則這個(gè)二次函數(shù)的表達(dá)式是    
【答案】分析:先利用二次函數(shù)的圖象與零點(diǎn)間的關(guān)系設(shè)y=a(x-2)(x-4),再利用最大值為9求出a可得這個(gè)二次函數(shù)的表達(dá)式.
解答:解:由題可設(shè)y=a(x+2)(x-4),
對(duì)稱軸x=1,所以當(dāng)x=1時(shí),ymax=9⇒a=-1,得a=-1,
故這個(gè)二次函數(shù)的表達(dá)式是y=-(x+2)(x-4),
故答案為:y=-(x+2)(x-4).
點(diǎn)評(píng):本題考查二次函數(shù)的圖象與零點(diǎn)間的關(guān)系.二次函數(shù)y=ax2+bx+c的零點(diǎn)就是相應(yīng)的一元二次方程ax2+bx+c=0的實(shí)數(shù)根,也是二次函數(shù)的圖象與x軸交點(diǎn)的橫坐標(biāo).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

11、若二次函數(shù)y=ax2+bx+c的圖象與x軸交于A(-2,0),B(4,0),且函數(shù)的最大值為9,則這個(gè)二次函數(shù)的表達(dá)式是
y=-(x+2)(x-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)log3
27
+lg25+lg4+7log72+(-9.8)0

(2)已知f(
x
+1)=x+2
x
,求f(x)的解析式
(3)若二次函數(shù)y=ax2+bx+c的圖象與x軸交于A(-2,0),B(4,0),且函數(shù)的最大值為9,求這個(gè)二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二次函數(shù)y=ax2+4x-2有零點(diǎn),則實(shí)數(shù)a的取值范圍是
a≥-2
a≥-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二次函數(shù)y=ax2+bx+c的頂點(diǎn)為(
12
,25),與x軸交于兩點(diǎn),且這兩點(diǎn)的橫坐標(biāo)的立方和為19,則這個(gè)二次函數(shù)的表達(dá)式為
y=-4x2+4x+24
y=-4x2+4x+24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(平)若二次函數(shù)y=ax2+bx+c(ac≠0)圖象的頂點(diǎn)坐標(biāo)為(-
b
2a
,-
1
4a
)
,與x軸的交點(diǎn)P、Q位于y軸的兩側(cè),以線段PQ為直徑的圓與y軸交于M(0,4)和N(0,-4).則點(diǎn)(b,c)所在曲線為( 。

查看答案和解析>>

同步練習(xí)冊答案