選做題選修4-5:不等式選講

已知函數(shù)。(1)作出函數(shù)的圖像;(2)解不等式

解:

(Ⅰ)

圖像如下:

(Ⅱ)不等式,即,

由函數(shù)圖像可知,原不等式的解集為


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(選做題)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評分,解答時應寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(不與點A,C重合),延長BD至點E.
求證:AD的延長線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣A=
12
-14

(1)求A的逆矩陣A-1
(2)求A的特征值和特征向量.
C.[選修4-4:坐標系與參數(shù)方程]
已知曲線C的極坐標方程為ρ=4sinθ,以極點為原點,極軸為x軸的非負半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=
1
2
t
y=
3
2
t+1
(t為參數(shù)),求直線l被曲線C截得的線段長度.
D.[選修4-5,不等式選講](本小題滿分10分)
設a,b,c均為正實數(shù),求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 選做題(在A、B、C、D四小題中只能選做兩題,并將選作標記用2B鉛筆涂黑,每小題10分,共20分,請在答題指定區(qū)域內(nèi)作答,解答時應寫出文字說明、證明過程或演算步驟).
A、(選修4-1:幾何證明選講)
如圖,BD為⊙O的直徑,AB=AC,AD交BC于E,求證:AB2=AE•AD
B、(選修4-2:矩形與變換)
已知a,b實數(shù),如果矩陣M=
1a
b2
所對應的變換將直線3x-y=1變換成x+2y=1,求a,b的值.
C、(選修4-4,:坐標系與參數(shù)方程)
設M、N分別是曲線ρ+2sinθ=0和ρsin(θ+
π
4
)=
2
2
上的動點,判斷兩曲線的位置關系并求M、N間的最小距離.
D、(選修4-5:不等式選講)
設a,b,c是不完全相等的正數(shù),求證:a+b+c>
ab
+
bc
+
ca

查看答案和解析>>

科目:高中數(shù)學 來源:2010年陜西省高三第四次高考適應性訓練數(shù)學(理)試題 題型:填空題

選做題(請考生在以下三個小題中任選一題做答,如果多做,則按所做的第一題評閱記分)
(1)(選修4—4坐標系與參數(shù)方程)已知直線的極坐標方程為,則極點到該直線的距離是                .
(2)(選修4—5 不等式選講)已知,則滿足不等式的實數(shù)的范圍            .
(3)(選修4—1 幾何證明選講)如圖,兩個等圓⊙與⊙外切,過作⊙的兩條切線是切點,點在圓上且不與點重合,則=       .

查看答案和解析>>

科目:高中數(shù)學 來源:2010年陜西省高三第七次適應性考試數(shù)學(理) 題型:填空題

選做題(請考生在以下三個小題中任選一題做答,如果多做,則按所做的第一題評閱記分)

 

(1).(選修4—4坐標系與參數(shù)方程) 極坐標方程分別為的兩個圓的圓心距為         ;

 

(2).(選修4—5 不等式選講)如果關于x的不等式的解集不是空集,則實數(shù)的取值范圍是       

 

(3).(選修4—1 幾何證明選講)如圖,AD是⊙O的切線,AC是⊙O的弦,過C作AD的垂線,垂足為B,CB與⊙O相交于點E,AE平分,且AE=2,則AC=       ;

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省高三第四次模擬考試數(shù)學試題 題型:解答題

[選做題]

A.選修4—1:幾何證明選講

    如圖,設AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點,AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD,求證:

   (1)l是⊙O的切線;

   (2)PB平分∠ABD.

B.選修4—2:矩陣與變換

二階矩陣對應的變換將點分別變換成點.求矩陣;

C.選修4—4:坐標系與參數(shù)方程

若兩條曲線的極坐標方程分別為=l與=2cos(θ+),它們相交于A,B兩點,求線

 段AB的長.

D.選修4—5:不等式選講

求函數(shù)的最大值.

 

查看答案和解析>>

同步練習冊答案