用數(shù)學(xué)歸納法證明
1·3·5…(2n-1)·2n=(2n)(2n-1)(2n-2)…(n+1)(n∈N)
(1)當(dāng)n=1時,左邊=1·21=2,右邊=2·1=2,∴等式成立; (2)設(shè)n=k時等式成立,即1·3·5……(2k-1)·2k=(2k)(2k-1)(2k-2)……(k+1),(k∈N), 則當(dāng)n=k+1時, 1·3·5……(2k-1)·(2k+1)·2k+1=[1·3·5…(2k-1)·2k]·(2k+1)·2 =[(2k)(2k-1)(2k-2)…(k+2)(k+1)]·(2k+1)·2 =(2k+2)(2k+1)·2k·(2k-1)·(2k-2)…(k+1) ∴n=k+1時等式成立。 由(1)、(2)可知,對一切n∈N,等式成立。
|
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
n+3 |
1 |
2 |
m |
n+3 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
6 |
1 |
2 |
4 |
3 |
3 |
2 |
2 |
2 |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com