已知a>0,b>0,n>1,n∈N*.用數(shù)學歸納法證明:
an+bn
2
≥(
a+b
2
)n
分析:用數(shù)學歸納法證明分為兩個步驟,第一步,先證明當當n=2時,左邊=右邊,第二步,先假設當n=k(k∈N*,k>1)時,不等式成立,利用此假設證明當n=k+1時,結論也成立即可.
解答:證明:(1)當n=2時,左邊-右邊=
a2+b2
2
-(
a+b
2
)2=(
a-b
2
)2≥0
,不等式成立.(2分)
(2)假設當n=k(k∈N*,k>1)時,不等式成立,即
ak+bk
2
≥(
a+b
2
)k
.(4分)
因為a>0,b>0,k>1,k∈N*,
所以(ak+1+bk+1)-(akb+abk)=(ak-bk)(a-b)≥0,于是ak+1+bk+1≥akb+abk.(6分)
當n=k+1時,(
a+b
2
)
k+1
=(
a+b
2
)
k
a+b
2
ak+bk
2
a+b
2
=
ak+1+bk+1+akb+abk
4
ak+1+bk+1+ak+1+bk+1
4
=
ak+1+bk+1
2

即當n=k+1時,不等式也成立.(9分)
綜合(1),(2)知,對于a>0,b>0,n>1,n∈N*,不等式
an+bn
2
≥(
a+b
2
)n
總成立.
(11分)
點評:本題主要考查數(shù)學歸納法,數(shù)學歸納法的基本形式
設P(n)是關于自然數(shù)n的命題,若1°P(n0)成立(奠基)
2°假設P(k)成立(k≥n0),可以推出P(k+1)成立(歸納),則P(n)對一切大于等于n0的自然數(shù)n都成立
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a>0,b>0,且ab=1,α=a+
4
a
,β=b+
4
b
,則α+β的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)在平面直角坐標系xOy中,判斷曲線C:
x=2cosθ
y=sinθ
(θ為參數(shù))與直線l:
x=1+2t
y=1-t
(t為參數(shù))是否有公共點,并證明你的結論.
(2)已知a>0,b>0,a+b=1,求證:
1
2a+1
+
4
2b+1
9
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•松江區(qū)二模)已知雙曲線C的中心在原點,D(1,0)是它的一個頂點,
d
=(1,
2
)
是它的一條漸近線的一個方向向量.
(1)求雙曲線C的方程;
(2)若過點(-3,0)任意作一條直線與雙曲線C交于A,B兩點 (A,B都不同于點D),求證:
DA
DB
為定值;
(3)對于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點,M,N為雙曲線Γ上的兩點(都不同于點E),且EM⊥EN,那么直線MN是否過定點?若是,請求出此定點的坐標;若不是,說明理由.然后在以下三個情形中選擇一個,寫出類似結論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點;
情形二:拋物線y2=2px(p>0)及它的頂點;
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,b>0,a+b=1,則a+
1
a
+b+
1
b
的最小值為
5
5

查看答案和解析>>

科目:高中數(shù)學 來源:松江區(qū)二模 題型:解答題

已知雙曲線C的中心在原點,D(1,0)是它的一個頂點,
d
=(1,
2
)
是它的一條漸近線的一個方向向量.
(1)求雙曲線C的方程;
(2)若過點(-3,0)任意作一條直線與雙曲線C交于A,B兩點 (A,B都不同于點D),求證:
DA
DB
為定值;
(3)對于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點,M,N為雙曲線Γ上的兩點(都不同于點E),且EM⊥EN,那么直線MN是否過定點?若是,請求出此定點的坐標;若不是,說明理由.然后在以下三個情形中選擇一個,寫出類似結論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點;
情形二:拋物線y2=2px(p>0)及它的頂點;
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點.

查看答案和解析>>

同步練習冊答案