已知直線(1-a)x+(a+1)y-4(a+1)=0(其中a為實(shí)數(shù))過定點(diǎn)P,點(diǎn)Q在函數(shù)的圖象上,則PQ連線的斜率的取值范圍是   
【答案】分析:直線方程即 x+y-4+a(-x+y-4)=0,由 ,求得定點(diǎn)P的坐標(biāo),設(shè)點(diǎn)Q(m,m+),m≠0,則PQ連線的斜率為為 =-3,再利用二次函數(shù)的性質(zhì)求得它的范圍.
解答:解:已知直線(1-a)x+(a+1)y-4(a+1)=0即 x+y-4+a(-x+y-4)=0,
由 ,解得 ,故定點(diǎn)P的坐標(biāo)為(0,4).
設(shè)點(diǎn)Q(m,m+),m≠0,則PQ連線的斜率為 =1+-=-3≥-3,
故PQ連線的斜率的取值范圍為[-3,+∞),
故答案為[-3,+∞).
點(diǎn)評(píng):本題主要考查直線過定點(diǎn)問題,直線的斜率公式,二次函數(shù)的性質(zhì)應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線(1+3m)x-(3-2m)y-(1+3m)=0(m∈R)所經(jīng)過的定點(diǎn)F恰好是橢圓C的一個(gè)焦點(diǎn),且橢圓C上的點(diǎn)到點(diǎn)F的最大距離為3.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過點(diǎn)F的直線l交橢圓于A、B兩點(diǎn),若
12
5
≤|FA|•|FB|≤
18
7
,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y-1=k(x-1)恒過定點(diǎn)A,若點(diǎn)A在直線mx+ny-1=0(m,n>0)上,則
1
m
+
1
n
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•靜安區(qū)一模)已知直線(1-a)x+(a+1)y-4(a+1)=0(其中a為實(shí)數(shù))過定點(diǎn)P,點(diǎn)Q在函數(shù)y=x+
1x
的圖象上,則PQ連線的斜率的取值范圍是
[-3,+∞)
[-3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:靜安區(qū)一模 題型:填空題

已知直線(1-a)x+(a+1)y-4(a+1)=0(其中a為實(shí)數(shù))過定點(diǎn)P,點(diǎn)Q在函數(shù)y=x+
1
x
的圖象上,則PQ連線的斜率的取值范圍是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案