若α∈{-2,-1,1,2,3},則使y=xα為奇函數(shù),且x∈(0,+∞)為減函數(shù)的α的值為
-1
-1
分析:按照冪函數(shù)的性質(zhì),當(dāng)指數(shù)大于零時(shí),在第一象限為增函數(shù);當(dāng)指數(shù)小于零時(shí),在第一象限為減函數(shù),其他象限結(jié)合奇偶性解決.
解答:解:根據(jù)冪函數(shù)的性質(zhì),
當(dāng)α=-1時(shí),y=xα為奇函數(shù)且在(0,+∞)上單調(diào)遞減
故答案為:-1
點(diǎn)評(píng):本題主要考查冪函數(shù)的圖象和性質(zhì),涉及到函數(shù)的奇偶性和單調(diào)性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F1(-1,0),F(xiàn)2(1,0),點(diǎn)p滿足|
PF
1
|+|
PF
2
|=2
2
,記點(diǎn)P的軌跡為E.
(Ⅰ)求軌跡E的方程;
(Ⅱ)過點(diǎn)F2(1,0)作直線l與軌跡E交于不同的兩點(diǎn)A、B,設(shè)
F2A
F2B
,T(2,0),,若λ∈[-2,-1],求|
TA
+
TB
|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2|x+1|-|x-1|≥2
2
,則x取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•閘北區(qū)二模)若2|x-1|+|x-a|≥2對(duì)任意實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍為
(-∞,-1]∪[3,+∞)
(-∞,-1]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•日照一模)已知長(zhǎng)方形EFCD,|EF|=2,|FC|=
2
2
.以EF的中點(diǎn)O為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系xOy.
(Ⅰ)求以E,F(xiàn)為焦點(diǎn),且過C,D兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)在(I)的條件下,過點(diǎn)F做直線l與橢圓交于不同的兩點(diǎn)A、B,設(shè)
FA
FB
,點(diǎn)T坐標(biāo)為(2,0),若λ∈[-2,-1],求|
TA
+
TB
|的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案