已知直線l:x+y-3=0及曲線C:(x-3)2+(y-2)2=2,則點M(2,1)(  )
A.在直線l上,但不在曲線C上
B.在直線l上,也在曲線C上
C.不在直線l上,也不在曲線C上
D.不在直線l上,但在曲線C上
∵2+1-3=0,
∴M在直線l上,
∵(2-3)2+(1-2)2=2
∴M也在曲線C上,
故選B.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知圓C1:x2+y2+D1x+E1y-3=0與圓C2:x2+y2+D2x+E2y-3=0都經(jīng)過點A(2,-1),則同時經(jīng)過點(D1,E1)和點(D2,E2)的直線方程為( 。
A.2x-y+2=0B.x-y-2=0C.x-y+2=0D.2x+y-2=0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,曲線y=x2+2x-3與坐標軸的交點都在圓C上.
(Ⅰ)求圓C的方程;
(Ⅱ)若圓C被直線x-y+a=0截得的弦長為2
3
,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓滿足:①截y軸所得弦長為2;②被x軸分成兩段圓弧,其弧長的比為3:1;③圓心到直線l:x-2y=0的距離為
5
5
.求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知⊙C1:x2+(y+5)2=5,點A(1,-3)
(Ⅰ)求過點A與⊙C1相切的直線l的方程;
(Ⅱ)設⊙C2為⊙C1關于直線l對稱的圓,則在x軸上是否存在點P,使得P到兩圓的切線長之比為
2
?薦存在,求出點P的坐標;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知圓C:x2+y2-2x+4y-4=0,P為圓C外且在直線y-x-3=0上的點,過點P作圓C的兩切線,則切線長的最小值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相切,若△ABC的三邊長分別為|a|,|b|,|c|,則該三角形為______(判斷三角形的形狀).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線:y=
3
3
x+
3
與圓心為D的圓:(x-
3
)2+(y-1)2=3
交于A、B兩點,則直線AD與BD的傾斜角之和為( 。
A.
7
6
π
B.
5
4
π
C.
4
3
π
D.
5
3
π

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若圓x2+y2=R2(R>0)和曲線
|x|
3
+
|y|
4
=1
恰有六個公共點,則R的值是______.

查看答案和解析>>

同步練習冊答案