已知圓C:x2+y2-2x+4y-4=0,P為圓C外且在直線y-x-3=0上的點(diǎn),過(guò)點(diǎn)P作圓C的兩切線,則切線長(zhǎng)的最小值為_(kāi)_____.
圓C:x2+y2-2x+4y-4=0即 (x-1)2+(y+2)2=9,
要使切線最短,需PC最小,故PC的最小值為圓心C(1,-2)到直線y-x-3=0的距離d,
且d=
|-2-1-3|
2
=3
2
,故切線長(zhǎng)為
d2-r2
=
18-32
=3,
故答案為:3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)P(x,y)在圓x2+y2-2y=0上運(yùn)動(dòng),則
y-1
x-2
的最大值與最小值分別為( 。
A.
3
,-
3
B.
3
3
,-
3
3
C.1,-1D.
3
,-
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如直線ax+by=R2與圓x2+y2=R2相交,則點(diǎn)(a,b)與此圓的位置關(guān)系是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓C:(x-1)2+(y-2)2=25及直線l:(2m+1)x+(m+1)y=7m+4.(m∈R)
(1)證明:不論m取什么實(shí)數(shù),直線l與圓C恒相交;
(2)求直線l與圓C所截得的弦長(zhǎng)的最短長(zhǎng)度及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線l:x+y-3=0及曲線C:(x-3)2+(y-2)2=2,則點(diǎn)M(2,1)( 。
A.在直線l上,但不在曲線C上
B.在直線l上,也在曲線C上
C.不在直線l上,也不在曲線C上
D.不在直線l上,但在曲線C上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線y=2px2(p>0)的準(zhǔn)線與圓x2+y2-4y-5=0相切,則p的值為( 。
A.10B.6C.
1
8
D.
1
24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線l:2xsinα+2ycosα+1=0,圓C:x2+y2+2xsinα+2ycosα=0,l與C的位置關(guān)系是( 。
A.相交B.相切C.相離D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓C經(jīng)過(guò)點(diǎn)A(-2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點(diǎn).
(1)求圓C的方程;
(2)若
OP
.
OQ
=-2
,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知圓和圓,動(dòng)圓M與圓,圓都相切,動(dòng)圓的圓心M的軌跡為兩個(gè)橢圓,這兩個(gè)橢圓的離心率分別為,),則的最小值是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案