已知非零向量
a
,
b
滿足|
a
+
b
|=|
a
-
b
|,求證:
a
b
考點:數(shù)量積判斷兩個平面向量的垂直關(guān)系
專題:平面向量及應(yīng)用
分析:把已知等式兩邊平方,整理后得到
a
b
=0
,即可得到
a
b
解答: 證明:由|
a
+
b
|=|
a
-
b
|,得|
a
+
b
|2=|
a
-
b
|2
,
(
a
+
b
)2=(
a
-
b
)2
,
也就是
a
2
+2
a
b
+
b
2
=
a
2
-2
a
b
+
b
2
,
整理得:
a
b
=0
,
a
b
點評:本題考查數(shù)量積判斷兩個向量的垂直關(guān)系,關(guān)鍵是明確
a
2
=|
a
|2
,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足a4=5,a2+a8=14,數(shù)列{bn}滿足b1=1,bn+1=2 an+3•bn
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列{
1
log2bn+1
}的前n項和;
(3)若cn=an•(
2
 an+1,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx+
a
x+1
,a為常數(shù).
(1)若a=
9
2
,求函數(shù)f(x)在[1,e]上的值域;(e為自然對數(shù)的底數(shù),e≈2.72)
(2)若函數(shù)g(x)=f(x)+x在[1,2]上為單調(diào)減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某同學在一次研究性學習中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù):
①sin213°+cos217°-sin13°cos17°;
②sin215°+cos215°-sin15°cos15°;
③sin218°+cos212°-sin18°cos12°
④sin2(-18°)+cos248°-sin(-18°)cos48°
⑤sin2(-25°)+cos255°-sin(-25°)cos55°.
(1)利用計算器求出這個常數(shù);
(2)根據(jù)(1)的計算結(jié)果,請你寫出一個三角恒等式,使得上述五個等式是這個恒等式的特殊情況;
(3)證明你寫出的三角恒等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點A(2,3),且離心率e=
1
2

(1)求橢圓C的標準方程;
(2)是否存在過點B(0,-4)的直線l交橢圓于不同的兩點M、N,且滿足
OM
ON
=
16
7
(其中點O為坐標原點),若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式ax2-3x+6>4的解集為{x|x<1或x>b}.
(1)求a,b;
(2)解不等式
x-c
ax-b
>0(c為常數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-2:矩陣與變換
若二階矩陣M滿足M
12
34
=
710
46

(Ⅰ)求二階矩陣M;
(Ⅱ)把矩陣M所對應(yīng)的變換作用在曲線3x2+8xy+6y2=1上,求所得曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè){an}是公差為-2的等差數(shù)列,如果a1+a4+a7+…+a97=50,則a3+a6+a9…+a99=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b是一對異面直線,且a,b成70°角.P為空間一定點,則在過P點的直線中與a,b所成角都為70°的直線有
 
條.

查看答案和解析>>

同步練習冊答案