已知函數(shù),則滿足不等式的實數(shù)的取值范圍是___________________.

 

【答案】

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:閱讀理解

閱讀下面一段文字:已知數(shù)列{an}的首項a1=1,如果當n≥2時,an-an-1=2,則易知通項an=2n-1,前n項的和Sn=n2.將此命題中的“等號”改為“大于號”,我們得到:數(shù)列{an}的首項a1=1,如果當n≥2時,an-an-1>2,那么an>2n-1,且Sn>n2.這種從“等”到“不等”的類比很有趣.由此還可以思考:要證Sn>n2,可以先證an>2n-1,而要證an>2n-1,只需證an-an-1>2(n≥2).結(jié)合以上思想方法,完成下題:
已知函數(shù)f(x)=x3+1,數(shù)列{an}滿足a1=1,an+1=f(an),若數(shù)列{an}的前n項的和為Sn,求證:Sn≥2n-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)y=f(x)滿足:①y=f(x)是偶函數(shù);②f(x+6)=f(x)+f(3)③當x∈[0,3]時,有
f(x1)-f(x2)
x1-x2
<0
;則(  )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

閱讀下面一段文字:已知數(shù)列{an}的首項a1=1,如果當n≥2時,an-an-1=2,則易知通項an=2n-1,前n項的和Sn=n2.將此命題中的“等號”改為“大于號”,我們得到:數(shù)列{an}的首項a1=1,如果當n≥2時,an-an-1>2,那么an>2n-1,且Sn>n2.這種從“等”到“不等”的類比很有趣.由此還可以思考:要證Sn>n2,可以先證an>2n-1,而要證an>2n-1,只需證an-an-1>2(n≥2).結(jié)合以上思想方法,完成下題:
已知函數(shù)f(x)=x3+1,數(shù)列{an}滿足a1=1,an+1=f(an),若數(shù)列{an}的前n項的和為Sn,求證:Sn≥2n-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:閱讀理解

(本小題滿分14分)

閱讀下面一段文字:已知數(shù)列的首項,如果當時,,則易知通項,前項的和. 將此命題中的“等號”改為“大于號”,我們得到:數(shù)列的首項,如果當時,,那么,且. 這種從“等”到“不等”的類比很有趣。由此還可以思考:要證,可以先證,而要證,只需證). 結(jié)合以上思想方法,完成下題:

已知函數(shù),數(shù)列滿足,,若數(shù)列的前項的和為,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年湖北省部分重點中學聯(lián)考高一(下)期中數(shù)學試卷(解析版) 題型:解答題

閱讀下面一段文字:已知數(shù)列{an}的首項a1=1,如果當n≥2時,an-an-1=2,則易知通項an=2n-1,前n項的和Sn=n2.將此命題中的“等號”改為“大于號”,我們得到:數(shù)列{an}的首項a1=1,如果當n≥2時,an-an-1>2,那么an>2n-1,且Sn>n2.這種從“等”到“不等”的類比很有趣.由此還可以思考:要證Sn>n2,可以先證an>2n-1,而要證an>2n-1,只需證an-an-1>2(n≥2).結(jié)合以上思想方法,完成下題:
已知函數(shù)f(x)=x3+1,數(shù)列{an}滿足a1=1,an+1=f(an),若數(shù)列{an}的前n項的和為Sn,求證:Sn≥2n-1.

查看答案和解析>>

同步練習冊答案