(本小題滿分12分)
如圖,在直三棱柱中,平面側(cè)面。
(Ⅰ)求證:;
(Ⅱ)若直線AC與平面A1BC所成的角為θ,二面角A1-BC-A的大小為φ,試判斷θ與φ的大小關(guān)系,并予以證明。
(Ⅰ)證明見解析。
(Ⅱ),證明見解析。
(Ⅰ)證明:如右圖,過點(diǎn)A在平面A1ABB1內(nèi)作AD⊥A1B于D,則
由平面A1BC⊥側(cè)面A1ABB1,且平面A1BC側(cè)面A1ABB1=A1B,得
AD⊥平面A1BC,又BC平面A1BC,所以AD⊥BC。
因?yàn)槿庵?i>ABC—A1B1C1是直三棱柱,則AA1⊥底面ABC,所以AA1⊥BC。
又AA1AD=A,從而BC⊥側(cè)面A1ABB1,
又AB側(cè)面A1ABB1,故AB⊥BC。
(Ⅱ)解法1:連接CD,則由(Ⅰ)知是直線AC與平面A1BC所成的角,
是二面角A1—BC—A的平面角,即
于是在中,在中,,
由,得,又,所以。
解法2:由(1)知,以點(diǎn)為坐標(biāo)原點(diǎn),以、、所在的直線分軸、軸、軸,建立如圖所示的空間直角坐標(biāo)系,
設(shè),
則,
于是,。
設(shè)平面的一個(gè)法向量為,則
由得
可取,于是與的夾角為銳角,則與互為余角。
所以,,
所以。
于是由,得,
即,又所以。
第(1)問證明線線垂直,一般先證線面垂直,再由線面垂直得線線垂直;第(2)問若用傳統(tǒng)方法一般來說要先作垂直,進(jìn)而得直角三角形。若用向量方法,關(guān)鍵在求法向量。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動(dòng)經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com