(本小題滿分12分)

如圖,在直三棱柱中,平面側(cè)面。

(Ⅰ)求證:;

(Ⅱ)若直線AC與平面A1BC所成的角為θ,二面角A1-BC-A的大小為φ,試判斷θφ的大小關(guān)系,并予以證明。

(Ⅰ)證明見解析。

(Ⅱ),證明見解析。


解析:

(Ⅰ)證明:如右圖,過點(diǎn)A在平面A1ABB1內(nèi)作ADA1BD,則

由平面A1BC⊥側(cè)面A1ABB1,且平面A1BC側(cè)面A1ABB1=A1B,得

AD⊥平面A1BC,又BC平面A1BC,所以ADBC

因?yàn)槿庵?i>ABC—A1B1C1是直三棱柱,則AA1⊥底面ABC,所以AA1BC。

AA1AD=A,從而BC⊥側(cè)面A1ABB1,

AB側(cè)面A1ABB1,故ABBC。

(Ⅱ)解法1:連接CD,則由(Ⅰ)知是直線AC與平面A1BC所成的角,

是二面角A1BCA的平面角,即

于是在中,中,,

,得,又,所以。

解法2:由(1)知,以點(diǎn)為坐標(biāo)原點(diǎn),以、所在的直線分軸、軸、軸,建立如圖所示的空間直角坐標(biāo)系,

設(shè),

于是,

設(shè)平面的一個(gè)法向量為,則

可取,于是的夾角為銳角,則互為余角。

所以,

所以

于是由,得,

,又所以。

第(1)問證明線線垂直,一般先證線面垂直,再由線面垂直得線線垂直;第(2)問若用傳統(tǒng)方法一般來說要先作垂直,進(jìn)而得直角三角形。若用向量方法,關(guān)鍵在求法向量。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊答案