21、如圖,AB是⊙O的直徑,C,F(xiàn)是⊙O上的兩點(diǎn),OC⊥AB,過點(diǎn)F作⊙O的切線FD交AB的延長線于點(diǎn)D.連接CF交AB于點(diǎn)E.
求證:DE2=DB•DA.
分析:欲證DE2=DB•DA,由于由切割線定理得DF2=DB•DA,故只須證:DF=DE,也就是要證:∠CFD=∠DEF,這個等式利用垂直關(guān)系通過互余角的轉(zhuǎn)換即得.
解答:證明:連接OF.
因為DF切⊙O于F,所以∠OFD=90°.
所以∠OFC+∠CFD=90°.
因為OC=OF,所以∠OCF=∠OFC.
因為CO⊥AB于O,所以∠OCF+∠CEO=90°.(5分)
所以∠CFD=∠CEO=∠DEF,所以DF=DE.
因為DF是⊙O的切線,所以DF2=DB•DA.所以DE2=DB•DA.(10分)
點(diǎn)評:本題考查的與圓有關(guān)的比例線段、切線的性質(zhì)、切割線定理的運(yùn)用.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
精英家教網(wǎng)
(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:南充高中2008-2009學(xué)年高二下學(xué)期第四次月考數(shù)學(xué)試題(理) 題型:044

如圖,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點(diǎn)C為圓周上異于A、B的一點(diǎn).

(1)若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.那么四面體P-ABC的直度為多少?說明理由;

(2)在四面體P-ABC中,AP=AB=1,設(shè).若動點(diǎn)M在四面體P-ABC表面上運(yùn)動,并且總保持PB⊥AM.設(shè)為動點(diǎn)M的軌跡圍成的封閉圖形的面積關(guān)于角的函數(shù),求取最大值時,二面角A-PB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省南充高中2008-2009學(xué)年高二下學(xué)期第四次月考數(shù)學(xué)文 題型:044

如圖,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點(diǎn)C為圓周上異于A、B的一點(diǎn).

(1)若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.那么四面體P-ABC的直度為多少?說明理由;

(2)如圖,若四面體P-ABC中,AP=AB=1,AE⊥PB,垂足為E,AF⊥PC,垂足為F.設(shè)∠EAF=,為△AEF面積的函數(shù),求取最大值時二面角A-PB-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD是正方形,E、F分別是ADBC邊上的點(diǎn),EFAB,EFAC于點(diǎn)O,以EF為棱把它折成直二面角A-EF-D后,求證:不論EF怎樣移動,∠AOC是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省南充高中08-09學(xué)年高二下學(xué)期第四次月考(理) 題型:解答題

 如圖甲,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點(diǎn)C為圓周上異于AB的一點(diǎn).

(1)若一個面體中有個面是直角三角形,則稱這個面體的直度為.那么四面體的直度為多少?說明理由;

(2)在四面體中,,設(shè).若動點(diǎn)在四面體 表面上運(yùn)動,并且總保持.設(shè)為動點(diǎn)的軌跡圍成的封閉圖形的面積關(guān)于角的函數(shù),求取最大值時,二面角的正切值.

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案