甲乙兩個(gè)班級(jí)均為40人,進(jìn)行一門考試后,按學(xué)生考試成績及格與不及格進(jìn)行統(tǒng)計(jì),甲班及格人數(shù)為36人,乙班及格人數(shù)為24人. 根據(jù)以上數(shù)據(jù)建立一個(gè)的列聯(lián)表如下:
 
不及格
及格
總計(jì)
甲班
a
b
 
乙班
c
d
 
總計(jì)
 
 
 
參考公式:;
P(K2>k)
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
  k
0.455
0.708
1.323
2.072
2.706
3.84
5.024
6.635
7.879
10.83
根據(jù)以上信息,在答題卡上填寫以上表格,通過計(jì)算對照參考數(shù)據(jù),有_____的把握認(rèn)為“成績與班級(jí)有關(guān)系” .
99.5%

試題分析:根據(jù)所給的數(shù)據(jù),可得2×2的列聯(lián)表,代入求觀測值的公式,做出觀測值,把所得的數(shù)值同觀測值表中的數(shù)據(jù)進(jìn)行比較,得到有1-0.005=99.5%的把握認(rèn)為“成績與班級(jí)有關(guān)系”.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了解某校學(xué)生參加某項(xiàng)測試的情況,從該校學(xué)生中隨機(jī)抽取了6位同學(xué),這6位同學(xué)的成績(分?jǐn)?shù))如莖葉圖所示.

⑴求這6位同學(xué)成績的平均數(shù)和標(biāo)準(zhǔn)差;
⑵從這6位同學(xué)中隨機(jī)選出兩位同學(xué)來分析成績的分布情況,設(shè)為這兩位同學(xué)中成績低于平均分的人數(shù),求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某化肥廠有甲、乙兩個(gè)車間包裝肥料,在自動(dòng)包裝傳送帶上每隔30分鐘抽取一包產(chǎn)品,稱其重量(單位:kg),分別記錄抽查數(shù)據(jù)如下:
甲:102,101,99,98,103,98,99;
乙:110,115,90,85,75,115,110.
(1)這種抽樣方法是哪一種方法?
(2)試計(jì)算甲、乙車間產(chǎn)品重量的平均數(shù)與方差,并說明哪個(gè)車間產(chǎn)品較穩(wěn)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了解某地區(qū)學(xué)生和包括老師、家長在內(nèi)的社會(huì)人士對高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調(diào)查,就是否“取消英語聽力”的問題,調(diào)查統(tǒng)計(jì)的結(jié)果如下表:

態(tài)度

 

應(yīng)該取消
應(yīng)該保留
無所謂
在校學(xué)生
2100人
120人
y
社會(huì)人士
600人
x
z
已知在全體樣本中隨機(jī)抽取1人,抽到持“應(yīng)該保留”態(tài)度的人的概率為0.05.
(1)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取360人進(jìn)行問卷訪談,問應(yīng)在持“無所謂”態(tài)度的人中抽取多少人?
(2)在持“應(yīng)該保留”態(tài)度的人中,用分層抽樣的方法抽取6人平均分成兩組進(jìn)行深入交流,求第一組中在校學(xué)生人數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某高校在2013年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如圖所示.
組號(hào)
分組
頻數(shù)
頻率
第1組

5
0.050
第2組


0.350
第3組

30

第4組

20
0.200
第5組

10
0.100
合計(jì)
100
1.00
 
(1)請先求出頻率分布表中①、②位置相應(yīng)的數(shù)據(jù),再在答題卷上完成下列頻率分布直方圖;

(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(3)在(2)的前提下,學(xué)校決定在6名學(xué)生中隨機(jī)抽取2名學(xué)生接受A考官進(jìn)行面試,求:第4組至少有一名學(xué)生被考官A面試的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了調(diào)查某廠2000名工人生產(chǎn)某種產(chǎn)品的能力,隨機(jī)抽查了位工人某天生產(chǎn)該產(chǎn)品的數(shù)量,產(chǎn)品數(shù)量的分組區(qū)間為,得到如題(16)圖所示的頻率分布直方圖。已知生產(chǎn)的產(chǎn)品數(shù)量在之間的工人有6位.
(1)求;
(2)工廠規(guī)定從生產(chǎn)低于20件產(chǎn)品的工人中隨機(jī)的選取2位工人進(jìn)行培訓(xùn),求這2位工人不在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某班同學(xué)利用國慶節(jié)進(jìn)行社會(huì)實(shí)踐,對[25,55]歲的人群隨機(jī)抽取n人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:
組 數(shù)
分 組
低碳族的人數(shù)
占本組的頻率
第一組
[25,30)
120
0.6
第二組
[30,35)
195
p
第三組
[35,40)
100
0.5
第四組
[40,45)
a
0.4
第五組
[45,50)
30
0.3
第六組
[50,55]
15
0.3
 

(1)補(bǔ)全頻率分布直方圖并求n,a,p的值.
(2)為調(diào)查該地區(qū)的年齡與生活習(xí)慣和是否符合低碳觀念有無關(guān)系,調(diào)查組按40歲以下為青年,40歲以上(含40歲)為老年分成兩組,請你先完成下面2×2列聯(lián)表,并回答是否有99%的把握認(rèn)為該地區(qū)的生活習(xí)慣是否符合低碳觀念與人的年齡有關(guān).
參考公式:χ2=
P(χ2≥x0)
0.050
0.010
0.001
x0
3.841
6.635
10.828
 
年齡組
是否低碳族
青 年
老 年
總 計(jì)
低碳族
 
 
 
非低碳族
 
 
 
總計(jì)
 
 
 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時(shí)間內(nèi)每個(gè)技工加工的合格零件數(shù)如下表:
 
1號(hào)
2號(hào)
3號(hào)
4號(hào)
5號(hào)
甲組
4
5
x
9
10
乙組
5
6
7
y
9
(1)已知兩組技工在單位時(shí)間內(nèi)加工的合格零件平均數(shù)為7,分別求出甲、乙兩組技工在單位時(shí)間內(nèi)加工的合格零件的方差,并由此分析兩組技工的加工水平;
(2)質(zhì)檢部門從該車間甲、乙兩組中各隨機(jī)抽取一名技工,對其加工的零件進(jìn)行檢測,若2人加工的合格零件個(gè)數(shù)之和超過14,則稱該車間“質(zhì)量合格”,求該車間“質(zhì)量合格”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名學(xué)生作為樣本,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六組:, ,后得到如圖的頻率分布直方圖.

(Ⅰ)求圖中實(shí)數(shù)的值;
(Ⅱ)若該校高一年級(jí)共有學(xué)生500人,試估計(jì)該校高一年級(jí)在考試中成績不低于60分的人數(shù);
(Ⅲ)若從樣本中數(shù)學(xué)成績在兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,試用列舉法求這兩名學(xué)生的數(shù)學(xué)成績之差的絕對值不大于10的概率.

查看答案和解析>>

同步練習(xí)冊答案