(本題滿分12分)
如圖所示,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.
(1)證明:PQ⊥平面DCQ;
(2)求棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值.
(1)證明:見解析;(2) 1:1.
解析試題分析:(Ⅰ)利用線面垂直的判定定理證明本題是解決本題的關鍵,要在平面中尋找與已知直線垂直的兩條相交直線,進行線面關系的互相轉化;
(Ⅱ)利用體積的計算方法將本題中的體積計算出來是解決本題的關鍵,掌握好錐體的體積計算公式.
解:
(1)證明:由條件知PDAQ為直角梯形.
因為QA⊥平面ABCD,所以平面PDAQ⊥平面ABCD,交線為AD.
又四邊形ABCD為正方形,DC⊥AD,
所以DC⊥平面PDAQ,可得PQ⊥DC.
在直角梯形PDAQ中可得DQ=PQ=PD,則PQ⊥QD.
所以PQ⊥平面DCQ.
(2)解:設AB=a.
由題設知AQ為棱錐Q-ABCD的高,所以棱錐Q-ABCD的體積V1=a3.
由(1)知PQ為棱錐P-DCQ的高,而PQ=a,△DCQ的面積為a2,
所以棱錐P-DCQ的體積V2=a3.
故棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值為1:1.
考點:本試題主要考查了空間中線面垂直的判定方法,考查學生的轉化與化歸能力,將線面垂直轉化為線線垂直,注意步驟的規(guī)范性,考查學生對錐體的體積的計算方法的認識,考查學生的幾何計算知識.
點評:解決該試題中一定要注意步驟的規(guī)范性以及對于線面垂直的性質定理的靈活運用。
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分11分)
如圖示,給出的是某幾何體的三視圖,其中正視圖與側視圖都是邊長為2的正三角形,俯視圖為半徑等于1的圓.試求這個幾何體的側面積與體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知三棱柱的側棱與底面垂直,,,,分別是,的中點,點在直線上,且;
(Ⅰ)證明:無論取何值,總有;
(Ⅱ)當取何值時,直線與平面所成的角最大?并求該角取最大值時的正切值;
(Ⅲ)是否存在點,使得平面與平面所成的二面角為30º,若存在,試確定點的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,用半徑為cm,面積為cm2的扇形鐵皮制作一個無蓋的圓錐形容器(銜接部分忽略不計), 該容器最多盛水多少?(結果精確到0.1 cm3)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com