(本小題8分)如圖所示,在正三棱柱中,若,,是中點(diǎn)。
(1)證明:平面;
(2)求與所成的角的大小。
(1)見解析;(2)。
解析試題分析:(1)連接交于點(diǎn),連接
正三棱柱的側(cè)面是矩形,所以是的中點(diǎn)
又是中點(diǎn),所以中…………………… 2分
平面,平面,所以平面…………4分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a6/b/wulsm.png" style="vertical-align:middle;" />,所以(或其補(bǔ)角)等于與所成的角………………… 5分
計(jì)算得:,所以,……………7分
所以與所成的角為………………8分
(用向量法酌情給分)
考點(diǎn):線面平行的判斷定理;異面直線所成的角。
點(diǎn)評(píng):本題是一個(gè)典型的異面直線所成的角的問題,解答時(shí)也是應(yīng)用典型的見中點(diǎn)找中點(diǎn)的方法,注意求角的三個(gè)環(huán)節(jié),一畫,二證,三求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,圓錐中,為底面圓的兩條直徑 ,AB交CD于O,且,,為的中點(diǎn).
(1)求證:平面;
(2)求圓錐的表面積;求圓錐的體積。
(3)求異面直線與所成角的正切值 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分) 如圖,在平行四邊形中,,將沿折起到的位置,使平面平面.
(1)求二面角E-AB-D的大小;
(2)求四面體的表面積和體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知正方形ABCD的邊長(zhǎng)為1,F(xiàn)D⊥平面ABCD,EB⊥平面ABCD,F(xiàn)D=BE=1,M為BC邊上的動(dòng)點(diǎn).
(1)設(shè)N為EF上一點(diǎn),當(dāng)時(shí),有DN ∥平面AEM,求 的值;
(2)試探究點(diǎn)M的位置,使平面AME⊥平面AEF。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)如圖,在長(zhǎng)方體中,,,點(diǎn)在棱上移動(dòng).
⑴ 證明://平面;
⑵證明:⊥;
⑶ 當(dāng)為的中點(diǎn)時(shí),求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
如圖所示,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.
(1)證明:PQ⊥平面DCQ;
(2)求棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)如圖,、分別是正四棱柱上、下底面的中
心,是的中點(diǎn),.
(Ⅰ)求證:∥平面;
(Ⅱ當(dāng)取何值時(shí),在平面內(nèi)的射影恰好為的重心?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com