已知函數(shù),
(1)求函數(shù)f(x)的最大值,最小值及最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)并用“五點(diǎn)法”畫出它一個(gè)周期的圖象.

【答案】分析:先利用二倍角公式對(duì)函數(shù)化簡可得,
(1)利用正弦函數(shù)的值域可得函數(shù)的最大值為2,最小值-2,;利用周期公式T=可求周期
(2)利用正弦函數(shù)的單調(diào)性可得,,求解即可
(3)略
解答:解:(1)f(x)==(3分)
∴周期T=∴當(dāng)時(shí),f(x)取得最大值2,
當(dāng)時(shí)f(x)取得最小值-2(6分)
(2)當(dāng)k∈Z即k∈Z函數(shù)f(x)單調(diào)遞增
∴函數(shù)f(x)的單調(diào)增區(qū)間為,(k∈Z)(9分)
(3)列表:



點(diǎn)評(píng):本題主要考查了利用二倍角的正弦余弦公式對(duì)三角函數(shù)式的化簡,輔助角公式ainx+bcosx=的運(yùn)用,正弦函數(shù)的最值及單調(diào)性的求解,五點(diǎn)法作三角函數(shù)的圖象,靈活運(yùn)用三角函數(shù)的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
x2-1,x<-1
|x|+1,-1≤x≤1
3x
+3,x>1
編寫一程序求函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省青島市高三3月統(tǒng)一質(zhì)量檢測(cè)考試(第二套)理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

1的最;

2當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱為函數(shù)的保值區(qū)間.設(shè),試問函數(shù)上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆湖南省高一12月月考數(shù)學(xué) 題型:解答題

(本題滿分14分)定義在D上的函數(shù),如果滿足;對(duì)任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界。

已知函數(shù),

(1)當(dāng)時(shí),求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請(qǐng)說明理由;

(2)若函數(shù)上是以3為上界函數(shù)值,求實(shí)數(shù)的取值范圍;

(3)若,求函數(shù)上的上界T的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間數(shù)學(xué)公式上的函數(shù)值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省徐州市銅山縣棠張中學(xué)高三(上)周練數(shù)學(xué)試卷(理科)(11.3)(解析版) 題型:解答題

已知函數(shù)
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間上的函數(shù)值的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案