各項(xiàng)均為正數(shù)的數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項(xiàng)和,對(duì)任意n∈N*,有2Sn=2an2+an-1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=
an
2n
,求數(shù)列{bn}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件推導(dǎo)出(an+1+an)(2an+1-2an-1)=0.由an>0,得數(shù)列{an}是以1為首項(xiàng),
1
2
為公差的等差數(shù)列,由此能求出an=
n+1
2

(2)由bn=
an
2n
=
n+1
2n+1
,利用錯(cuò)位相減法能求出數(shù)列{bn}的前n項(xiàng)和Tn
解答: 解:(1)∵2Sn=2an2+an-1,∴2Sn+1=2an+12+an+1-1,
兩式相減得:2an+1=2(an+1-an)(an+1+an)+(an+1-an),
即(an+1+an)(2an+1-2an-1)=0.
∵an>0,∴2an+1-2an-1=0,∴an+1-an=
1
2

∴數(shù)列{an}是以1為首項(xiàng),
1
2
為公差的等差數(shù)列,
∴an=
n+1
2

(2)∵bn=
an
2n
=
n+1
2n+1
,
∴Tn=
2
22
+
3
23
+
4
24
+…+
n+1
2n+1
,①
1
2
Tn=
2
23
+
3
24
+
4
25
+…+
n+1
2n+2
,②
①-②得
1
2
Tn=
1
2
+
1
23
+
1
24
+…+
1
2n+1
-
n+1
2n+2

=
1
2
+
1
8
(1-
1
2n-1
)
1-
1
2
-
n+1
2n+2

=
3
4
-
1
2n+1
-
n+1
2n+2
,
∴Tn=
3
2
-
1
2n
-
n+1
2n+1
=
3
2
-
n+3
2n+1
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的前n項(xiàng)和的求法,解題時(shí)要認(rèn)真審題,注意錯(cuò)位相減法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2014的值為( 。
A、
2014
2015
B、
2013
2014
C、
2012
2013
D、
2011
2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二面角α-l-β為60°,點(diǎn)A∈α,AC⊥l,C為垂足,點(diǎn)B∈β,BD⊥l,D為垂足,且AC=2,CD=3,DB=1,則AB的長(zhǎng)度為(  )
A、4
B、2
3
C、3
3
D、
3
2
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn為等比數(shù)列{an}的前n項(xiàng)和,已知3Sn=an+1-2,求公比q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足:a3•a4=117,a2+a5=22.
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)若數(shù)列{bn}是等差數(shù)列,且bn=
Sn
n+c
,求非零常數(shù)c;
(3)在(2)的條件下,設(shè)cn=an2-λbn,已知數(shù)列{cn}為遞增數(shù)列,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|a|<1,|b|<1,求證:|1-ab|>|a-b|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中,a1+a5=8,a4=2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)Tn=|a1|+|a2|+|a3|+…+|an|,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

箱子里有3雙不同的手套,隨機(jī)拿出2只,記事件A表示“拿出的手套配不成對(duì)”;事件B表示“拿出的都是同一只手上的手套”.
(1)請(qǐng)列出所有的基本事件;
(2)分別求事件A、事件B的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=
1
2
,2an+1=an+1•an+1.
(Ⅰ)求a2,a3,a4的值,由此猜測(cè){an}的通項(xiàng)公式,并證明你的結(jié)論;
(Ⅱ)證明:a1•a3•a5…a2n-1
1-an
1+an
2
sin
1
2n+1

查看答案和解析>>

同步練習(xí)冊(cè)答案