5.${∫}_{1}^{e}$$\frac{ln{x}^{2}}{x}$dx=1.

分析 ${∫}_{1}^{e}$$\frac{ln{x}^{2}}{x}$dx=${∫}_{1}^{e}2lnxd(lnx)$,由此能求出結(jié)果.

解答 解:${∫}_{1}^{e}$$\frac{ln{x}^{2}}{x}$dx=${∫}_{1}^{e}ln{x}^{2}d(lnx)$=${∫}_{1}^{e}2lnxd(lnx)$=(lnx)2${|}_{1}^{e}$=1.
故答案為:1.

點評 本題考查函數(shù)的定積分的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意定積分的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,四棱錐P-ABCD的底面是矩形,側(cè)面PAD是正三角形,且側(cè)面PAD⊥底面ABCD,E為側(cè)棱PD的中點.
(Ⅰ)求證:AE⊥PC;
(II)若直線AC與平面PCD所成的角為30°,求$\frac{CD}{AD}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知兩圓的方程分別為x2+y2-4x=0和x2+y2-4y=0公共弦所在直線方程是x-y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=$\frac{1}{3}{x^3}$-4x+4在區(qū)間[0,3]上的最大值與最小值分別是(  )
A.$1,-\frac{4}{3}$B.$4,-\frac{4}{3}$C.$4,\frac{4}{3}$D.$\frac{4}{3},-4$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,DP⊥x軸,點M在DP的延長線上,且$\frac{{|{DM}|}}{{|{DP}|}}=\frac{3}{2}$,當(dāng)點P在圓x2+y2=4上運(yùn)動時,點M形成的軌跡為L.
(1)求軌跡L的方程;
(2)已知定點E(-2,0),若直線y=kx+2(k≠0)與點M的軌跡L交于A,B兩點,問:是否存在實數(shù)k,使以AB為直徑的圓過點E?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}是等差數(shù)列,a3=5,a7=13,數(shù)列{bn}前n項和為Sn,且滿足Sn=2bn-1(n∈N*
(1)求數(shù)列{an},{bn}的通項公式;
(2)令cn=anbn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.解不等式|x-1|-|x-2|>$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.直線l1與l2的斜率分別是方程6x2+x-1=0的兩根,則直線l1與l2的夾角為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.?dāng)?shù)列2,22,222,2222,的一個通項公式an是( 。
A.${a_n}={10^n}-8$B.${a_n}=\frac{{{{10}^n}-1}}{9}$C.${a_n}={2^n}-1$D.${a_n}=\frac{{2({{{10}^n}-1})}}{9}$

查看答案和解析>>

同步練習(xí)冊答案