已知,,且

(1)將表示為的函數(shù),并求的單調(diào)增區(qū)間;

(2)已知分別為的三個(gè)內(nèi)角對應(yīng)的邊長,若,且,,求的面積.

 

【答案】

(1),;(2)。

【解析】

試題分析:(1)由,    2分

  4分

,   5分

,即增區(qū)間為  6分

(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013070913011352915982/SYS201307091301528078248452_DA.files/image011.png">,所以,,  7分

   8分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013070913011352915982/SYS201307091301528078248452_DA.files/image015.png">,所以.  9分

由余弦定理得:,即    10分

,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013070913011352915982/SYS201307091301528078248452_DA.files/image020.png">,所以           11分

.   12分

考點(diǎn):向量的數(shù)量積;向量垂直的條件;三角函數(shù)的性質(zhì);余弦定理;三角形的面積公式。

點(diǎn)評:本題是一道三角函數(shù)同向量結(jié)合的問題,是以向量垂直為條件,得到三角函數(shù)的關(guān)系式,是一道綜合題,在高考時(shí)可以選擇和填空形式出現(xiàn),也可以作為解答題的一部分出現(xiàn)。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(x+
π
4
)=
1+tanx
1-tanx
(x≠kπ+
π
4
)
,那么函數(shù)y=tanx的周期為π.類比可推出:已知x∈R且f(x+π)=
1+f(x)
1-f(x)
,那么函數(shù)y=f(x)的周期是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=a且an+2an+1+an+2=0(n∈N*),則S2010=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3e|x|+a(e=2.71828…是自然對數(shù)的底數(shù))的最小值為3.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)已知b∈R且x<0,試解關(guān)于x的不等式 lnf(x)-ln3<x2+(2b-1)x-3b2
(Ⅲ)已知m∈Z且m>1.若存在實(shí)數(shù)t∈[-1,+∞),使得對任意的x∈[1,m],都有f(x+t)≤3ex,試求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a1=3且an=Sn-1+2n,則an=
(n+2)×2n-1
(n+2)×2n-1
;Sn=
(n+1)×2n
(n+1)×2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省嘉興一中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù),且f(1)=log162,f(-2)=1.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若數(shù)列xn的項(xiàng)滿足xn=[1-f(1)]•[1-f(2)]•…•[1-f(n)],試求x1,x2,x3,x4
(3)猜想數(shù)列xn的通項(xiàng),并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

同步練習(xí)冊答案