分析 (1)利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的周期性得出結(jié)論.
(2)利用定義域和值域求得f(x)在區(qū)間$[\frac{π}{4},\frac{3π}{4}]$上的最值.
解答 解:(1)∵f(x)=sin2x+cos2x+2sin xcos x+cos 2x=1+sin 2x+cos 2x
=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1,
∴函數(shù)f(x)的最小正周期為T(mén)=$\frac{2π}{2}$=π.
(2)由(1)的計(jì)算結(jié)果知,f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1,
當(dāng)x∈[$\frac{π}{4}$,$\frac{3π}{4}$]時(shí),2x+$\frac{π}{4}$∈[$\frac{3π}{4}$,$\frac{7π}{4}$],
由正弦函數(shù)y=sin t在$[{\frac{3}{4}π,\frac{3}{2}π}]$單調(diào)遞減,在$[{\frac{3}{2}π,\frac{7}{4}π}]$上單調(diào)遞減.
當(dāng)2x+$\frac{π}{4}$=$\frac{3π}{4}$,即x=$\frac{π}{4}$時(shí),f(x)取最大值2;
當(dāng)2x+$\frac{π}{4}$=$\frac{3π}{2}$,即x=$\frac{5π}{8}$時(shí),f(x)取最小值-$\sqrt{2}$+1.
綜上,f(x)在區(qū)間$[\frac{π}{4},\frac{3π}{4}]$上的最大值為2,最小值為-$\sqrt{2}$+1.
點(diǎn)評(píng) 本題主要考查三角恒等變換、正弦函數(shù)的周期性、定義域和值域,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分非必要 | B. | 必要非充分 | ||
C. | 充要 | D. | 既非充分也非必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 最小正周期為π | B. | 是奇函數(shù) | ||
C. | 在區(qū)間$(-\frac{1}{12}π,\frac{5}{12}π)$上單調(diào)遞減 | D. | $(\frac{5}{12}π,0)$為其圖象的一個(gè)對(duì)稱中心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com