分析 (Ⅰ)根據(jù)題意化簡求出集合A,集合B.根據(jù)集合的基本運算即可求A∪B,
(Ⅱ)先求出A∩B,在根據(jù)C⊆(A∩B),建立條件關系即可求實數(shù)a的取值范圍.
解答 解:(Ⅰ)集合A{x|$\frac{2-x}{3+x}$≥0},B={x|x2-2x-3<0},
C={x|x2-(2a+1)x+a(a+1)<0}.
∵$\frac{2-x}{3+x}≥0$,即(2-x)(3+x)≥0,
解得:-3<x≤2,
∴集合A={x|-3<x≤2}:
又∵x2-2x-3<0,
解得:-1<x<3,
∴集合B={x|-1<x<3}:
那么:A∪B={x|-3<x<3}.
(Ⅱ) 由(Ⅰ)可得集合A={x|-3<x≤2}:集合B={x|-1<x<3}:
那么:A∩B={x|-1<x≤2}.
∵x2-(2a+1)x+a(a+1)<0
∴(x-a)(x-a-1)<0.
∴集合C={x|a<x<a+1}
∵C⊆(A∩B),
∴需滿足$\left\{\begin{array}{l}{a≤-1}\\{a+1≤2}\end{array}\right.$,
解得:-1≤a≤1.
所以實數(shù)a的取值范圍是[-1,1].
點評 本題主要考查了不等式的計算能力和集合的基本運算,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,-2) | B. | (1,0) | C. | (1,-2) | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,+∞] | B. | (0,1) | C. | [-9,+∞) | D. | [-9,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com