精英家教網 > 高中數學 > 題目詳情

已知定點,曲線C是使為定值的點的軌跡,曲線過點.
(1)求曲線的方程;
(2)直線過點,且與曲線交于,當的面積取得最大值時,求直線的方程;
(3)設點是曲線上除長軸端點外的任一點,連接、,設的角平分線交曲線的長軸于點,求的取值范圍.

(1);(2);(3).

解析試題分析:(1)依題意并結合橢圓的定義,先判斷出曲線的軌跡是以原點為中心,以為焦點的橢圓,從而得出橢圓中參數的值,由計算出參數的值,最后由計算出的取值即可得到曲線的方程;(2)設點,聯(lián)立直線與橢圓的方程,消去得到,從而由二次方程根與系數的關系得到,再由弦長公式計算出,再計算出點到直線的距離,由公式計算出三角形的面積(含參數),結合基本不等式可確定面積最大時的值,從而可確定直線方程;(3)設,由角平分線可得=,化簡并代入坐標進行運算,即可得出,然后根據,可確定的取值范圍.
試題解析:(1)    2分
曲線C為以原點為中心,為焦點的橢圓
設其長半軸為,短半軸為,半焦距為,則,
曲線C的方程為                                4分
(2)設直線的為代入橢圓方程,得
,計算并判斷得,
,得

到直線的距離,設,則

時,面積最大
的面積取得最大值時,直線l的方程為:
  9分
(3)由題意可知:=,=        10分
其中,將向量坐標代入并化簡得:
m(,                12分
因為,所以,                        13分
,所以

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知橢圓的焦點坐標為F1(-1,0),F2(1,0),過F2垂直于長軸的直線交橢圓于P,Q兩點,且|PQ|=3.
(1)求橢圓的方程;
(2)過F2的直線l與橢圓交于不同的兩點M,N,則△F1MN的內切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知分別是橢圓的左,右頂點,點在橢圓 上,且直線與直線的斜率之積為

(1)求橢圓的標準方程;
(2)點為橢圓上除長軸端點外的任一點,直線,與橢圓的右準線分別交于點,
①在軸上是否存在一個定點,使得?若存在,求點的坐標;若不存在,說明理由;
②已知常數,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓C=1(a>b>0)的離心率與等軸雙曲線的離心率互為倒數關系,直線lxy=0與以原點為圓心, 以橢圓C的短半軸長為半徑的圓相切.
(1)求橢圓C的方程;
(2)設M是橢圓的上頂點,過點M分別作直線MA,MB交橢圓于A,B兩點,設兩直線的斜率分別為k1,k2,且k1k2=4,證明:直線AB過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在平面直角坐標系中,動點滿足:點到定點與到軸的距離之差為.記動點的軌跡為曲線.
(1)求曲線的軌跡方程;
(2)過點的直線交曲線兩點,過點和原點的直線交直線于點,求證:直線平行于軸.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設橢圓的方程為 ,斜率為1的直線不經過原點,而且與橢圓相交于兩點,為線段的中點.
(1)問:直線能否垂直?若能,求之間滿足的關系式;若不能,說明理由;
(2)已知的中點,且點在橢圓上.若,求之間滿足的關系式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知拋物線的頂點在坐標原點,焦點軸上,拋物線上的點的距離為2,且的橫坐標為1.直線與拋物線交于,兩點.
(1)求拋物線的方程;
(2)當直線的傾斜角之和為時,證明直線過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的離心率為,直線與圓相切.
(1)求橢圓的方程;
(2)設直線與橢圓的交點為,求弦長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓C的兩個焦點是(0,-)和(0,),并且經過點,拋物線E的頂點在坐標原點,焦點F恰好是橢圓C的右頂點.
(Ⅰ)求橢圓C和拋物線E的標準方程;
(Ⅱ)過點F作兩條斜率都存在且互相垂直的直線l1、l2,l1交拋物線E于點A、B,l2交拋物線E于點G、H,求的最小值.

查看答案和解析>>

同步練習冊答案