在平面直角坐標系中,動點滿足:點到定點與到軸的距離之差為.記動點的軌跡為曲線.
(1)求曲線的軌跡方程;
(2)過點的直線交曲線、兩點,過點和原點的直線交直線于點,求證:直線平行于軸.

(1).;(2).詳見解析;

解析試題分析:(1)依題意知,動點滿足:點到定點與到軸的距離之差為,由此可得,進而求曲線C方程;
(2)法Ⅰ:設,求出直線的方程為,將直線與拋物線方程聯(lián)立,得,求出直線的方程為 進而點的坐標為 直線平行于軸;
法Ⅱ:設的坐標為,求出的方程為得到點的縱坐標為, 由于, 則直線的方程為得點的縱坐標為,則軸;當時,結論也成立,故命題得證.
試題解析:(1)依題意:        2分
      4分
           6分
注:或直接用定義求解.
(2)法Ⅰ:設,直線的方程為
   得       8分

直線的方程為 的坐標為   10分

直線平行于軸.           13分
法Ⅱ:設的坐標為,則的方程為
的縱坐標為,          8分
 直線的方程為
的縱坐標為.        11分
軸;當時,結論也成立,
直線平行于軸.           13分.
考點:1. 軌跡方程;2. 直線與圓錐曲線的綜合問題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,已知對于任意實數(shù)k,直線(k+1)x+(k)y-(3k)=0恒過定點F.設橢圓C的中心在原點,一個焦點為F,且橢圓C上的點到F的最大距離為2+.
(1)求橢圓C的方程;
(2)設(mn)是橢圓C上的任意一點,圓Ox2y2r2(r>0)與橢圓C有4個相異公共點,試分別判斷圓O與直線l1mxny=1和l2mxny=4的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,焦距為的橢圓的兩個頂點分別為,且與n共線.

(1)求橢圓的標準方程;
(2)若直線與橢圓有兩個不同的交
,且原點總在以為直徑的圓的內部,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓:的左焦點為,且過點.

(1)求橢圓的方程;
(2)設過點P(-2,0)的直線與橢圓E交于A、B兩點,且滿足.
①若,求的值;
②若M、N分別為橢圓E的左、右頂點,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓C=1(a>b>0)的離心率e,右焦點到直線=1的距離d,O為坐標原點.
(1)求橢圓C的方程;
(2)過點O作兩條互相垂直的射線,與橢圓C分別交于A,B兩點,證明,點O到直線AB的距離為定值,并求弦AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定點,曲線C是使為定值的點的軌跡,曲線過點.
(1)求曲線的方程;
(2)直線過點,且與曲線交于,當的面積取得最大值時,求直線的方程;
(3)設點是曲線上除長軸端點外的任一點,連接、,設的角平分線交曲線的長軸于點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線,點,過的直線交拋物線兩點.
(1)若線段中點的橫坐標等于,求直線的斜率;
(2)設點關于軸的對稱點為,求證:直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓的方程為 ,斜率為1的直線不經過原點,而且與橢圓相交于兩點,為線段的中點.
(1)問:直線能否垂直?若能,之間滿足什么關系;若不能,說明理由;
(2)已知的中點,且點在橢圓上.若,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知橢圓的右頂點為A(2,0),點P(2e,)在橢圓上(e為橢圓的離心率).

(1)求橢圓的方程;
(2)若點B,C(C在第一象限)都在橢圓上,滿足,且,求實數(shù)λ的值.

查看答案和解析>>

同步練習冊答案