在△ABC中,B=45°,C=60°,c=1,則△ABC中最短邊的邊長等于( 。
分析:由B與C的度數(shù)求出A的度數(shù),得到B為最小角,利用大角對大邊得到b為最短邊,進而有sinB,sinC及c的值,利用正弦定理即可求出b的值.
解答:解:∵B=45°,C=60°,c=1,
∴由正弦定理
b
sinB
=
c
sinC
得:b=
csinB
sinC
=
2
2
3
2
=
6
3

故選D
點評:此題考查了正弦定理,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,B=
π
4
,AC=2
5
,cosC=
2
5
5

(1)求sinA;
(2)記BC的中點為D,求中線AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,B=
π
4
,b=2
5
,sinC=
5
5
,求另兩條邊c、a的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,b=4,A=
π
3
,面積S=2
3

(1)求BC邊的長度;   
(2)求值:
sin2(
A
4
+
π
4
)+ccos2B
1
tan
C
2
+tan
C
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鎮(zhèn)江二模)如圖,在△ABC中,B=
π
4
,角A的平分線AD交BC于點D,設∠BAD=α,sinα=
5
5

(1)求sin∠BAC和sinC;
(2)若
BA
BC
=28
,求AC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,B=
π
4
,角A的平分線AD交BC于點D,設∠BAD=α,sinα=
5
5

(Ⅰ)求sinC;   
(Ⅱ)若
BA
BC
=28
,求AC的長.

查看答案和解析>>

同步練習冊答案