精英家教網 > 高中數學 > 題目詳情
函數y=x2(1-2x),(0<x<
1
2
)
取得最大值時,對應的自變量x的值是
1
3
1
3
分析:由y=x2(1-2x)=x2-2x3,知y′=2x-6x2,由y′=2x-6x2=0,得x=0,或x=
1
3
,由0<x<
1
2
,知x=
1
3
,列表得x=
1
3
時,函數取極大值y=(
1
3
)
2
•(1-2×
1
3
)
=
1
27
.由此能求出函數y=x2(1-2x)(0<x<
1
2
)
取最大值時,對應的自變量x的值.
解答:解:∵y=x2(1-2x)=x2-2x3
∴y′=2x-6x2,
由y′=2x-6x2=0,得x=0,或x=
1
3
,
0<x<
1
2

x=
1
3
,
列表,得
 x  (0,
1
3
 
1
3
 (
1
3
,
1
2
 f′(x) + -
 f(x)  極大值
∴x=
1
3
時,函數取極大值y=(
1
3
)
2
•(1-2×
1
3
)
=
1
27

∵函數y=x2(1-2x)(0<x<
1
2
)
只有唯一的一個極大值,
∴結合函數的性質,知函數y=x2(1-2x)(0<x<
1
2
)
取最大值時,
對應的自變量x的值為
1
3

故答案為:
1
3
點評:本題考查利用導數求閉區(qū)間上函數的最大值的應用,是基礎題.解題時要認真審題,仔細解答,注意合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對于定義在[a,b]上的兩個函數f(x)與g(x),如果對于任意x∈[a,b],均有|f(x)-g(x)|≤1,則稱f(x)與g(x)在[a,b]上是接近的.若函數y=x2-4x+2與函數y=4x+m在區(qū)間[3,5]上是接近的,則實數m的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

函數y=x2-x-2的零點為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

下列幾個命題:
①方程x2+(a-3)x+a=0有一個正實根,一個負實根,則a<0;
②函數y=
x2-1
+
1-x2
是偶函數,但不是奇函數;
③函數f(x)的值域是[-2,2],則函數f(x+1)的值域為[-3,1];
④一條曲線y=|3-x2|和直線y=a(a∈R)的公共點個數是m,則m的值不可能是1.
其中正確的有
①④
①④

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數y=
x2+1
(x≤-1),則f-1(2)=
-
3
-
3

查看答案和解析>>

科目:高中數學 來源: 題型:

函數y=x2+1(x<-1)的反函數是( 。

查看答案和解析>>

同步練習冊答案