11.已知函數(shù)f(x)=log2x(4-x).
(I)若函數(shù)f(x)在區(qū)間(m,m+1)上單調(diào)遞增,求實(shí)數(shù)m的取值范圍;
(Ⅱ)如果函數(shù)f(x)在區(qū)間[n,m]上的值域是[log2(n+2),log2(m+2)],試求實(shí)數(shù)m的值;
(Ⅲ)如果函數(shù)f(x)在區(qū)間(0,m]上的值域是(-∞,log2(λm2].求實(shí)數(shù)λ的取值范圍.

分析 (1)f(x)=log2[-(x-2)2+4],當(dāng)x∈(0,2)時(shí),f(x)單調(diào)遞增,當(dāng)x∈(2,4)時(shí),f(x)單調(diào)遞減;
(2)根據(jù)二次函數(shù)的圖象分三類討論,列式求解;
(3)分兩類討論,用分離參數(shù)發(fā)求解.

解答 解:(1)f(x)=log2[-(x-2)2+4],x∈(0,4),
當(dāng)x∈(0,2)時(shí),f(x)單調(diào)遞增,當(dāng)x∈(2,4)時(shí),f(x)單調(diào)遞減,
依題意,x∈(m,m+1),f(x)單調(diào)遞增,
所以,$\left\{\begin{array}{l}{m≥0}\\{m+1≤2}\end{array}\right.$,解得m∈[0,1];
(2)由(1)知,f(x)在(0,2)上遞增,在(2,4)遞減,
要使函數(shù)在[n,m]的值域?yàn)閇log2(n+2),log2(m+2)],需分類如下:
①當(dāng)0<n<m≤2時(shí),函數(shù)遞增,所以f(x)min=f(n),f(x)max=f(m),
即log2n(4-n)=log2(n+2),log2m(4-m)=log2(m+2),
解得n=1,m=2,經(jīng)檢驗(yàn)符合題意;
②當(dāng)2≤n<m<4時(shí),函數(shù)單調(diào)遞減,所以f(x)min=f(m),f(x)max=f(n),
即log2n(4-n)=log2(m+2),log2m(4-m)=log2(n+2),
即n(4-n)=m+2,m(4-m)=n+2,兩式相減得m+n=5,
所以,n2-5n+7=0,該方程無解;
③當(dāng)0<n<2<m<4時(shí),所以,f(x)max=f(2)=log24=log2(m+2),解得m=2,舍去;
綜合以上討論得,n=1,m=2;
(3)因?yàn)閒(x)在(0,2)上遞增,在(2,4)遞減,所以分兩類討論,
①當(dāng)0<m≤2時(shí),f(x)max=f(m)=log2m(4-m)=log2(λm2),
解得λ=$\frac{4}{m}$-1∈[1,+∞);
②當(dāng)2<m<4時(shí),f(x)max=f(2)=log24=log2(λm2),
解得λ=$\frac{4}{m^2}$∈($\frac{1}{4}$,1),
綜合以上討論得,λ∈($\frac{1}{4}$,+∞).

點(diǎn)評(píng) 本題主要考查了對(duì)數(shù)函數(shù)的圖象和性質(zhì),以及二次函數(shù)的性質(zhì)和分類討論的解題思想,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)有兩個(gè)命題:命題p:函數(shù)f(x)=-x2+ax+1在[1,+∞)上是單調(diào)減函數(shù);命題q:已知函數(shù)f(x)=2x3-6x2在[a,a+1]上單調(diào)遞減,若命題p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若$cos(2α-\frac{π}{4})=\frac{3}{5}$,$\frac{π}{8}<α<\frac{π}{2}$,則cos2α=$-\frac{\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ex-1,g(x)=ln(x+1).
(1)求函數(shù)φ(x)=g(x)+x+1平行于直線2x-y+1=0的切線方程;
(2)求函數(shù)F(x)=|f(x)|-g(x)的最小值;
(3)已知0≤y<x,試比較f(x-y)與g(x)-g(y)的大小,并證明結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,四凌錐P-ABCD而底面ABCD是矩形,側(cè)面PAD是等腰直角三角形∠APD=90°,且平面PAD⊥平面ABCD.
(Ⅰ)求證:平面PAD⊥平面PCD;
(Ⅱ)在AD=2,AB=4,求三棱錐P-ABD的體積;
(Ⅲ)在條件(Ⅱ)下,求四棱錐P-ABCD外接球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.f(x)是定義域?yàn)镽的偶函數(shù),f′(x)為f(x)的導(dǎo)函數(shù),當(dāng)x≤0時(shí),恒有f(x)+xf′(x)<0,設(shè)g(x)=xf(x),則滿足g(2x-1)<g(3)的實(shí)數(shù)x的取值范圍是( 。
A.(2,+∞)B.(-1,2)C.(-∞,-2)∪(2,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知:cotβ=$\sqrt{5}$,$\frac{sinα}{sinβ}$=sin(α+β),則cot(α+β)=$\sqrt{5}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)f(x)=x2+bx+c(b,c∈R),函數(shù)f(x)在區(qū)間(2,3]上有最大值1.
(Ⅰ)若c=4,求b的值;
(Ⅱ)當(dāng)|x|>2時(shí),f(x)>0恒成立,求b+$\frac{1}{c}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.將四封不同的信裝進(jìn)寫好地址的四個(gè)信封,則恰好只有一封信裝錯(cuò)信封的概率是0;恰好有兩封信裝錯(cuò)信封的概率是$\frac{1}{4}$;(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案