設(shè)函數(shù)f(x)=的最大值為M,最小值為m,則M+m=   
【答案】分析:函數(shù)可化為f(x)==,令,則為奇函數(shù),從而函數(shù)的最大值與最小值的和為0,由此可得函數(shù)f(x)=的最大值與最小值的和.
解答:解:函數(shù)可化為f(x)==
,則為奇函數(shù)
的最大值與最小值的和為0
∴函數(shù)f(x)=的最大值與最小值的和為1+1+0=2
即M+m=2
故答案為:2
點評:本題考查函數(shù)的最值,考查函數(shù)的奇偶性,解題的關(guān)鍵是將函數(shù)化簡,轉(zhuǎn)化為利用函數(shù)的奇偶性解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

先解答(1),再通過類比解答(2):
(1)①求證:tan(x+
π
4
)=
1+tanx
1-tanx
;②用反證法證明:函數(shù)f(x)=tanx的最小正周期是π;
(2)設(shè)x∈R,a為正常數(shù),且f(x+a)=
1+f(x)
1-f(x)
,試問:f(x)是周期函數(shù)嗎?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c,滿足f(1)=0
(1)若c=1,解不等式f(x)>0
(2)若a>b>c,設(shè)方程f(x)=0的最小根為x0,確定a,c的符號并求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=-sin(kπ+x)(k∈Z)是奇函數(shù);
②函數(shù)f(x)=tanx的圖象關(guān)于點(
2
,0)(n∈Z)對稱;
③函數(shù)f(x)=|sinx|的最小正周期為π;
④設(shè)x是第二象限角,則tan
x
2
>cot
x
2
,且sin
x
2
>cos
x
2

其中正確的命題是
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•江蘇一模)設(shè)函數(shù)f(x)=lnx的定義域為(M,+∞),且M>0,對于任意a,b,c∈(M,+∞),若a,b,c是直角三角形的三條邊長,且f(a),f(b),f(c)也能成為三角形的三條邊長,那么M的最小值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市渝中區(qū)巴蜀中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)向量=(cosωx,2cosωx),=(2cosωx,sinωx)(x∈R,ω>0),已知函數(shù)f(x)=+1的最小正周期是
(1)求ω的值;
(2)求f(x)的最大值,并求出f(x)取得最大值的x的集合.

查看答案和解析>>

同步練習(xí)冊答案