在等差數(shù)列中,若是方程的兩個(gè)根,那么的值為( )

A. B. C.12 D.6

 

B

【解析】

試題分析:因?yàn)椋?img src="http://thumb.1010pic.com/pic6/res/GZSX/web/STSource/2014111719262691887084/SYS201411171926295595955753_DA/SYS201411171926295595955753_DA.001.png">是方程的兩個(gè)根,所以,,由等差數(shù)列的性質(zhì)得,故選B.

考點(diǎn):1.等差數(shù)列的性質(zhì);2.二次方程根與系數(shù)的關(guān)系.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖北省黃岡市高三下學(xué)期三月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在三棱錐中,直線平面,且

,又點(diǎn),,分別是線段,的中點(diǎn),且點(diǎn)是線段上的動(dòng)點(diǎn).

證明:直線平面;

(2) 若,求二面角的平面角的余弦值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖北省武漢市高三下學(xué)期4月調(diào)研測(cè)試文科數(shù)學(xué)試卷(解析版) 題型:填空題

若變量滿足約束條件,則目標(biāo)函數(shù)z=2x+3y的最大值為_(kāi)_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖北省宜昌示范教學(xué)協(xié)作體高一下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

中,已知

(1)求角的值;

(2)若,求的面積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖北省宜昌示范教學(xué)協(xié)作體高一下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

等差數(shù)列,的前項(xiàng)和分別為,,若,則( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖北省天門(mén)市畢業(yè)生四月調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的離心率,且直線是拋物線的一條切線.

(1)求橢圓的方程;

(2)點(diǎn)P 為橢圓上一點(diǎn),直線,判斷l(xiāng)與橢圓的位置關(guān)系并給出理由;

(3)過(guò)橢圓上一點(diǎn)P作橢圓的切線交直線于點(diǎn)A,試判斷線段AP為直徑的圓是否恒過(guò)定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖北省天門(mén)市畢業(yè)生四月調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

在整數(shù)集Z中,被5除所得余數(shù)為k的所有整數(shù)組成一個(gè)“類(lèi)”,記為,即. 給出如下四個(gè)結(jié)論:

①2011∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整數(shù)a,b屬于同一‘類(lèi)’”的充要條件是“a-b∈[0]”.

其中,正確的結(jié)論的個(gè)數(shù)是 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖北省天門(mén)市畢業(yè)生四月調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知數(shù)列為等比數(shù)列,其前n項(xiàng)和為,且滿足,成等差數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)已知,記,求數(shù)列前n項(xiàng)和.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖北省七市(州)高三年級(jí)聯(lián)合考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)若上恒成立,求所有實(shí)數(shù)的值;

(3)對(duì)任意的,證明:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案