設(shè)公差為)的等差數(shù)列與公比為)的等比數(shù)列有如下關(guān)系:,
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)記,,求集合中的各元素之和。
(I);(Ⅱ).

試題分析:(I)根據(jù)題中已知條件列出關(guān)于等差數(shù)列的公差與等比數(shù)列的公比的方程組,通過消參法將方程組轉(zhuǎn)化為有關(guān)于的方程,求出便可求出等比數(shù)列的公比,于次確定數(shù)列的通項(xiàng)公式;(Ⅱ)通過數(shù)列通項(xiàng)公式的特點(diǎn)找出兩個(gè)數(shù)列前項(xiàng)中的共同數(shù),進(jìn)而確定集合的公共元素,最終可以求出集合中各元素之和.
試題解析:(I)由已知
    得
    
,   
(Ⅱ)集合與集合的相同元素和為:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列滿足,數(shù)列滿足.
(1)證明數(shù)列是等差數(shù)列并求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)公差不為0的等差數(shù)列{an}的首項(xiàng)為1,且a2,a5,a14構(gòu)成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足+…+=1-,n∈N*,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知各項(xiàng)均為正數(shù)的兩個(gè)無窮數(shù)列、滿足
(Ⅰ)當(dāng)數(shù)列是常數(shù)列(各項(xiàng)都相等的數(shù)列),且時(shí),求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)、都是公差不為0的等差數(shù)列,求證:數(shù)列有無窮多個(gè),而數(shù)列惟一確定;
(Ⅲ)設(shè),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列和公比為的等比數(shù)列滿足:,,
(Ⅰ)求數(shù)列,的通項(xiàng)公式;
(Ⅱ)若數(shù)列的前項(xiàng)和為,且對(duì)任意均有成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,Sm-1=-2,Sm=0,Sm+1=3,則m= (    )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若三位數(shù)被7整除,且成公差非零的等差數(shù)列,則這樣的整數(shù)共有(  )個(gè)。
A.4B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

兩千多年前,古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家曾經(jīng)在沙灘上研究數(shù)學(xué)問題,他們?cè)谏碁┥袭孅c(diǎn)或用小石子來表示數(shù),按照點(diǎn)或小石子能排列的形狀對(duì)數(shù)進(jìn)行分類,如圖4中的實(shí)心點(diǎn)個(gè)數(shù)1,5,12,22,…, 被稱為五角形數(shù),其中第1個(gè)五角形數(shù)記作,第2個(gè)五角形數(shù)記作,第3個(gè)五角形數(shù)記作,第4個(gè)五角形數(shù)記作,……,若按此規(guī)律繼續(xù)下去,若,則                     .

1         5            12               22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列 為等差數(shù)列,若,),則.類比上述結(jié)論,對(duì)于等比數(shù)列),若,),則可以得到(      )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案