分析 (I)an+1=3an-2n+1,n∈N*,bn=an-n,可得bn+1=an+1-(n+1)=3(an-n)=3bn.即可證明.
(II)由(I)可得:bn=3n-1=an-n,解得an=n+3n-1.再利用等差數(shù)列與等比數(shù)列的求和公式即可得出.
(III)當(dāng)n≥2且n∈N*時(shí),作差Sn+1-3Sn=an+1-2Sn,代入化簡(jiǎn)即可證明.
解答 (I)證明:∵an+1=3an-2n+1,n∈N*,bn=an-n,
∴bn+1=an+1-(n+1)=3an-2n+1-(n+1)=3(an-n)=3bn.
∴數(shù)列{bn}是等比數(shù)列,首項(xiàng)為1,公比為3.
(II)解:由(I)可得:bn=3n-1=an-n,解得an=n+3n-1.
∴數(shù)列{an}的前n項(xiàng)和Sn=$\frac{n(n+1)}{2}$+$\frac{{3}^{n}-1}{3-1}$,即${S_n}=\frac{{n({n+1})}}{2}+\frac{{{3^n}-1}}{2}$.
(III)證明:當(dāng)n≥2且n∈N*時(shí),Sn+1-3Sn=an+1-2Sn
=n+1+3n-2$[\frac{n(n+1)}{2}+\frac{{3}^{n}-1}{2}]$
=2-n2<0,
∴不等式Sn+1<3Sn.
點(diǎn)評(píng) 本題考查了數(shù)列的遞推關(guān)系、等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式、作差法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a+b≥$\sqrt{2{h}^{2}+2{c}^{2}}$ | B. | a+b≥$\sqrt{4{h}^{2}+{c}^{2}}$ | C. | a+b≥$\sqrt{4{h}^{2}+2{c}^{2}}$ | D. | a+b≥$\sqrt{{h}^{2}+2{c}^{2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|0<x<5} | B. | {x|2<x<7} | C. | {x|2<x<5} | D. | {x|0<x<7} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com