使得(      )

A.               B.               C.               D.

 

【答案】

B

【解析】 二項(xiàng)式展開式的通項(xiàng)公式為,若展開式中有常數(shù)項(xiàng),則,解得,當(dāng)r取2時(shí),n的最小值為5,故選B

【考點(diǎn)定位】本題考查二項(xiàng)式定理的應(yīng)用。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)椋?,+∞)的函數(shù)f(x)滿足:
(1)對(duì)任意x∈(0,+∞),恒有f(2x)=2f(x)成立;
(2)當(dāng)x∈(1,2]時(shí)f(x)=2-x給出結(jié)論如下:
①任意m∈Z,有f(2m)=0;
②函數(shù)f(x)的值域?yàn)閇0,+∞);
③存在n∈Z,使得f(2n+1)=9;
④“函數(shù)f(x)在區(qū)間(a,b)上單調(diào)遞減”的充要條件是“存在k∈Z,使得(a,b)⊆(2k,2k-1).
其中所有正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線L:x2=2py(p>0)和點(diǎn)M(2,2),若拋物線L上存在不同的兩點(diǎn)A、B滿足
AM
+
BM
=0

(1)求實(shí)數(shù)p的取值范圍;
(2)當(dāng)p=2時(shí),拋物線L上是否存在異于A、B的點(diǎn)C,使得經(jīng)過A、B、C三點(diǎn)的圓和拋物線L在點(diǎn)C處有相同的切線?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線L的方程為x2=2py(p>0),直線y=x截拋物線L所得弦|AB|=4
2

(1)求p的值;
(2)拋物線L上是否存在異于點(diǎn)A、B的點(diǎn)C,使得經(jīng)過A、B、C三點(diǎn)的圓和拋物線L在點(diǎn)C處有相同的切線.若存在,求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1的側(cè)棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1上動(dòng)點(diǎn),F(xiàn)是AB中點(diǎn),AC=1,BC=2,AA1=4.
(1)當(dāng)E是棱CC1中點(diǎn)時(shí),求證:CF∥平面AEB1;
(2)在棱CC1上是否存在點(diǎn)E,使得二面角A-EB1-B的余弦值是
2
17
17
,若存在,求CE的長(zhǎng),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一個(gè)等腰直角三角形的硬紙片△ABC中,∠ACB=90°,AC=4cm,CD是斜邊上的高,沿CD把△ABC折成直二面角.
(1)如果你手中只有一把能夠量長(zhǎng)度的直尺,應(yīng)該如何確定A、B的位置,使得二面角A-CD-B是直二面角?證明你的結(jié)論.
(2)試在平面ABC上確定一點(diǎn)P,使DP與平面ABC內(nèi)任意一條直線垂直,證明你的結(jié)論.
(3)如果在折成的三棱錐內(nèi)有一個(gè)小球,求出球的半徑的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案