(本小題滿分14分)
如圖,設(shè)是圓上的動點(diǎn),點(diǎn)D是軸上的投影,M為D上一點(diǎn),且
(Ⅰ)當(dāng)的在圓上運(yùn)動時,求點(diǎn)M的軌跡C的方程;
(Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的長度。

(Ⅰ);(Ⅱ)。

解析試題分析:(Ⅰ)設(shè)M的坐標(biāo)為,的坐標(biāo)為 
由已知得在圓上,即C的方程為(6分 )
(Ⅱ)過點(diǎn)(3,0)且斜率為 的直線方程為,設(shè)直線與C的交點(diǎn)為
,將直線方程代入C的方程,得,
。
線段AB的長度為
                     (12分)
注:求AB長度時,利用韋達(dá)定理或弦長公式求得正確結(jié)果,同樣給分。
考點(diǎn):本題考查圓的簡單性質(zhì);橢圓的簡單性質(zhì);弦長公式;軌跡方程的求法。
點(diǎn)評:求曲線的軌跡方程是常見題型,其常采用的方法有直接法、定義法、相關(guān)點(diǎn)法、參數(shù)法. 我們這里用到的是相關(guān)點(diǎn)法,所謂相關(guān)點(diǎn)法就是根據(jù)相關(guān)點(diǎn)所滿足的方程,通過轉(zhuǎn)換而求動點(diǎn)的軌跡方程. 不管應(yīng)用哪種方法求軌跡方程,一定要注意軌跡的純粹性和完備性.要注意區(qū)別“軌跡”與“軌跡方程”是兩個不同的概念.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,過點(diǎn)垂直的直線交軸負(fù)半軸于點(diǎn),且
(1)求橢圓的離心率; (2)若過、、三點(diǎn)的圓恰好與直線相切,
求橢圓的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)已知橢圓的中心在原點(diǎn),焦點(diǎn),軸上,經(jīng)過點(diǎn),,且拋物線的焦點(diǎn)為.
(1) 求橢圓的方程;
(2) 垂直于的直線與橢圓交于,兩點(diǎn),當(dāng)以為直徑的圓軸相切時,求直線的方程和圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求與橢圓有共同焦點(diǎn),且過點(diǎn)(0,2)的雙曲線方程,并且求出這條雙曲線的實(shí)軸長、焦距、離心率以及漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

本小題滿分10分)
求適合下列條件的拋物線的標(biāo)準(zhǔn)方程:
(1)過點(diǎn)(-3,2);
(2)焦點(diǎn)在直線x-2y-4=0上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸的負(fù)半軸上,過點(diǎn)作直線與拋物線交于A,B兩點(diǎn),且滿足,
(1)求拋物線的方程
(2)當(dāng)拋物線上的一動點(diǎn)P從A運(yùn)動到B時,求面積的的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖橢圓的上頂點(diǎn)為A,左頂點(diǎn)為B, F為右焦點(diǎn), 過F作平行與AB的直線交橢圓于C、D兩點(diǎn). 作平行四邊形OCED, E恰在橢圓上。
(1)求橢圓的離心率;
(2)若平行四邊形OCED的面積為, 求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(10分)已知拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過雙曲線的一個焦點(diǎn),并與雙曲線的實(shí)軸垂直,已知拋物線與雙曲線的交點(diǎn)為.
(1)求拋物線的標(biāo)準(zhǔn)方程;    (2)求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知拋物線, 過點(diǎn)引一弦,使它恰在點(diǎn)被平分,求這條弦所在的直線的方程.

查看答案和解析>>

同步練習(xí)冊答案