已知y=f(x)是偶函數(shù),當(dāng)x>0時,,且當(dāng)x∈[-3,-1]時,n≤f(x)≤m恒成立,則n-m的最小值是   
【答案】分析:根據(jù)函數(shù)是偶還是,轉(zhuǎn)化為對稱區(qū)間[1,3],研究函數(shù)的值域問題,從而可解.
解答:解:由題意,∵y=f(x)是偶函數(shù),x∈[-3,-1]
所以考慮對稱區(qū)間[1,3]
最小值為x=2的時候,此時的值為4
而f(1)=5,f(3)=
所以f(x)在[1,3]上的值域為[4,5]
所以最小值為m-n=5-4=1
故答案為1
點評:本題以偶函數(shù)為依托,考查函數(shù)的對稱性,考查利用基本不等式求函數(shù)的最值,有一定的綜合性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在[-1,1]上的函數(shù),若對于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時,有f(x)>0
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)f(x)在[-1,1]上是增函數(shù),還是減函數(shù),并用單調(diào)性定義證明你的結(jié)論;
(3)設(shè)f(1)=1,若f(x)<(1-2a)m+2,對所有x∈[-1,1],a∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在[-1,1]上的函數(shù),若對于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時,有f(x)>0.
(1)求f(0)的值;
(2)判斷函數(shù)的奇偶性;
(3)判斷函數(shù)f(x)在[-1,1]上是增函數(shù)還是減函數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)是定義在R上的不恒為零的函數(shù),且對于任意的a,b∈R,都滿足:f(a•b)=af(b)+bf(a).
(1)求f(1)的值;
(2)判斷y=f(x)的奇偶性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)是定義在[-1,1]上的函數(shù),若對于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時,有f(x)>0
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)f(x)在[-1,1]上是增函數(shù),還是減函數(shù),并用單調(diào)性定義證明你的結(jié)論;
(3)設(shè)f(1)=1,若f(x)<(1-2a)m+2,對所有x∈[-1,1],a∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)是定義在[-1,1]上的函數(shù),若對于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時,有f(x)>0
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)f(x)在[-1,1]上是增函數(shù),還是減函數(shù),并用單調(diào)性定義證明你的結(jié)論;
(3)設(shè)f(1)=1,若f(x)<(1-2a)m+2,對所有x∈[-1,1],a∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案