精英家教網 > 高中數學 > 題目詳情

已知函數f(x)是定義在[-1,1]上的函數,若對于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時,有f(x)>0
(1)判斷函數的奇偶性;
(2)判斷函數f(x)在[-1,1]上是增函數,還是減函數,并用單調性定義證明你的結論;
(3)設f(1)=1,若f(x)<(1-2a)m+2,對所有x∈[-1,1],a∈[-1,1]恒成立,求實數m的取值范圍.

解:(1)令x=y=0,則f(0+0)=f(0)+f(0)∴f(0)=0
令y=-x,則f(x-x)=f(0)=f(x)+f(-x),∴f(-x)=-f(x)
∴f(x)是奇函數.(4分)
(2)函數f(x)在[-1,1]上是增函數.(6分)
設x1,x2∈[-1,1]且x1<x則x2-x1>0
∴f(x1)-f(x2)=-f(x2-x1
又∵x>0,f(x)>0∴f(x2-x1)>0
∴f(x1)-f(x2)=-f(x2-x1)<0即f(x1)<f(x2
故由函數單調性定義可知,函數f(x)在[-1,1]上是增函數.(10分)
(3)設f(1)=1,若f(x)<(1-2a)m+2,對所有x∈[-1,1],a∈[-1,1]恒成立.
則必須(1-2a)m+2>1,?a∈[-1,1]恒成立;
即-2ma+m+1>0,?a∈[-1,1]恒成立
令g(a)=-2ma+m+1必須
解得-<m<1
故實數m的取值范圍為-<m<1.(14分)
分析:(1)利用賦值法先求出f(0),然后令y=-x,可得f(-x)與f(x)的關系,從而判定函數的奇偶性;
(2)根據函數單調性的定義先在定義域上任取兩點,并規(guī)定大小,然后判定函數的大小,從而確定函數的單調性;
(3)關于恒成立的問題常常進行轉化,若f(x)<(1-2a)m+2,對所有x∈[-1,1],a∈[-1,1]恒成立可轉化成(1-2a)m+2>1,?a∈[-1,1]恒成立,然后將其看成關于a的函數研究恒成立問題.
點評:本題主要考查了抽象函數的奇偶性和單調性,以及函數恒成立問題的運用,同時考查了轉化思想和計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2
,
(1)計算:[f(1)]2-[g(1)]2;
(2)證明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=x+
a
x
的定義域為(0,+∞),且f(2)=2+
2
2
.設點P是函數圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.
(3)設O為坐標原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點,橫坐標為
1
2
的點P滿足2
OP
=
OM
+
ON
(O為坐標原點).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn;
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點,且x1+x2=1.
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn;
(3)在(2)的條件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數列{an}的前n項和.求Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個相鄰函數的交點為A,B,若m變化時,AB的長度是一個定值,則AB的值是( 。

查看答案和解析>>

同步練習冊答案