【題目】已知,函數(shù).

1)如果實(shí)數(shù)a,b滿足,,試判斷函數(shù)的奇偶性;

2)設(shè),判斷函數(shù)R上的單調(diào)性并加以證明.

【答案】(1)當(dāng)時(shí),是偶函數(shù);當(dāng)時(shí),是奇函數(shù);當(dāng)時(shí),既不是奇函數(shù)也不是偶函數(shù).(2)函數(shù)R上是增函數(shù),證明見解析.

【解析】

1)討論,三種情況,根據(jù)奇偶性的定義得到答案.

2)函數(shù)單調(diào)遞增,設(shè),,計(jì)算得到,得到證明.

1)由已知,得,.

是偶函數(shù),則,即,對(duì)任意實(shí)數(shù)x恒成立,;

是奇函數(shù),則,即,對(duì)任意實(shí)數(shù)x恒成立,.

綜上,當(dāng)時(shí),是偶函數(shù);當(dāng)時(shí),是奇函數(shù);當(dāng)時(shí),既不是奇函數(shù)也不是偶函數(shù).

2,,∴函數(shù)是增函數(shù),是減函數(shù).

知,是增函數(shù),即函數(shù)R上是增函數(shù).

證明如下:設(shè),,則.

,,,,,,,即,故函數(shù)R上是增函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)證明:當(dāng)時(shí),函數(shù)上是單調(diào)函數(shù);

(2)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科技公司新研制生產(chǎn)一種特殊疫苗,為確保疫苗質(zhì)量,定期進(jìn)行質(zhì)量檢驗(yàn).某次檢驗(yàn)中,從產(chǎn)品中隨機(jī)抽取100件作為樣本,測量產(chǎn)品質(zhì)量體系中某項(xiàng)指標(biāo)值,根據(jù)測量結(jié)果得到如下頻率分布直方圖:

(1)求頻率分布直方圖中的值;

(2)技術(shù)分析人員認(rèn)為,本次測量的該產(chǎn)品的質(zhì)量指標(biāo)值X服從正態(tài)分布,若同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中間值代替,計(jì)算,并計(jì)算測量數(shù)據(jù)落在(187.8,212.2)內(nèi)的概率;

(3)設(shè)生產(chǎn)成本為y元,質(zhì)量指標(biāo)值為,生產(chǎn)成本與質(zhì)量指標(biāo)值之間滿足函數(shù)關(guān)系假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中間值代替,試計(jì)算生產(chǎn)該疫苗的平均成本.

參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系xOy中,曲線C1的普通方程為,曲線C2參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為

(1)求C1的參數(shù)方程和的直角坐標(biāo)方程;

(2)已知P是C2上參數(shù)對(duì)應(yīng)的點(diǎn),Q為C1上的點(diǎn),求PQ中點(diǎn)M到直線的距離取得最大值時(shí),點(diǎn)Q的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某大學(xué)學(xué)生在某天上網(wǎng)的時(shí)間,隨機(jī)對(duì)100名男生和100名女生進(jìn)行了不記名的問卷調(diào)查. 得到如下的統(tǒng)計(jì)結(jié)果.

1:男生上網(wǎng)時(shí)間與頻數(shù)分布表:

上網(wǎng)時(shí)間(分鐘)

人數(shù)

10

20

40

20

10

2:女生上網(wǎng)時(shí)間與頻數(shù)分布表:

上網(wǎng)時(shí)間(分鐘)

人數(shù)

5

25

30

25

15

完成下面的2×2列聯(lián)表,并回答能否有90%的把握認(rèn)為“大學(xué)生上網(wǎng)時(shí)間與性別有關(guān)”?

附:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù),若存在實(shí)數(shù),使得成立,則x0稱為f(x)的“不動(dòng)點(diǎn)”.

(1)設(shè)函數(shù),求的不動(dòng)點(diǎn);

(2)設(shè)函數(shù),若對(duì)于任意的實(shí)數(shù)b,函數(shù)f(x)恒有兩相異的不動(dòng)點(diǎn),求實(shí)數(shù)a的取值范圍;

(3)設(shè)函數(shù)定義在上,證明:若存在唯一的不動(dòng)點(diǎn),則也存在唯一的不動(dòng)點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知五邊形ABECD由一個(gè)直角梯形和一個(gè)等邊三角形構(gòu)成(如圖1所示),.將梯形沿著折起(如圖2所示),點(diǎn)的中點(diǎn),平面

1)求證:

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:①存在實(shí)數(shù)α,使sinαcosα1 ②函數(shù)ysinx)是偶函數(shù):③直線x是函數(shù)ysin2x)的一條對(duì)稱軸:④若α、β是第一象限的角,且αβ,則sinαsinβ.其中正確的命題是(

A.①②B.②③C.①③D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求的極坐標(biāo)方程;

(2)若曲線的極坐標(biāo)方程為,直線在第一象限的交點(diǎn)為,與的交點(diǎn)為(異于原點(diǎn)),求.

查看答案和解析>>

同步練習(xí)冊(cè)答案