橢圓=1上一點(diǎn)P與橢圓的兩個焦點(diǎn)F1、F2的連線互相垂直,則△PF1F2的面積為_____________
24

試題分析:由題意得 a=7,b=2,∴c=5,兩個焦點(diǎn)F1 (-5,0),F(xiàn)2(5,0),
設(shè)點(diǎn)P(m,n),則 由題意得  
=-1,,
∴n2=,n=±,
則△PF1F2的面積為  
×2c×|n|=×10×=24,
故答案為24.
點(diǎn)評:中檔題,利用直線垂直的條件,結(jié)合點(diǎn)在橢圓上,建立方程組,以進(jìn)一步確定三角形的面積,本題解法思路明確,難度不大。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

雙曲線與橢圓有相同焦點(diǎn),且經(jīng)過點(diǎn),求其方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn),動點(diǎn)滿足.
(1)求動點(diǎn)P的軌跡方程; 
(2)設(shè)(1)中所求軌跡與直線交于點(diǎn)、兩點(diǎn) ,求證(為原點(diǎn))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為橢圓)的兩個焦點(diǎn),過F2作橢圓的弦AB,若的周長為16,橢圓的離心率,則橢圓的方程為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的左右焦點(diǎn)為,直線AB過點(diǎn)且交橢圓于A、B兩點(diǎn),則△的周長為_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為幾點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.已知直線上兩點(diǎn)的極坐標(biāo)分別為,圓的參數(shù)方程(為參數(shù)).
(Ⅰ)設(shè)為線段的中點(diǎn),求直線的平面直角坐標(biāo)方程;
(Ⅱ)判斷直線與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,射線OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),過點(diǎn)P(1,0)作直線分別交射線OA、OB于A、B兩點(diǎn).
(1)當(dāng)AB中點(diǎn)為P時,求直線AB的方程;
(2)當(dāng)AB中點(diǎn)在直線上時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

平面內(nèi)與兩定點(diǎn)連線的斜率之積等于非零常數(shù)的點(diǎn)的軌跡,加上 兩點(diǎn),所成的曲線可以是圓,橢圓或雙曲線.
(Ⅰ)求曲線的方程,并討論的形狀與值的關(guān)系;
(Ⅱ)當(dāng)時,對應(yīng)的曲線為;對給定的,對應(yīng)的曲線為,若曲線的斜率為的切線與曲線相交于兩點(diǎn),且為坐標(biāo)原點(diǎn)),求曲線的方程.

查看答案和解析>>

同步練習(xí)冊答案