【題目】已知函數(shù)有極值,且在處的切線與直線垂直.
(1)求實數(shù)的取值范圍;
(2)是否存在實數(shù),使得函數(shù)的極小值為.若存在,求出實數(shù)的值;若不存在,請說明理由.
【答案】(1)(2)存在實數(shù),使得函數(shù)的極小值為.
【解析】試題分析:(1),因為在處的切線與直線垂直,所以,得與的關(guān)系。因為 函數(shù)有極值,故方程有兩個不等實根,其判別式大于0,結(jié)合,可求實數(shù)的取值范圍;(2)根據(jù)導(dǎo)函數(shù)的正負,求函數(shù)的極小值、極小值點,令極小值等于2,求得極值點,進而求實數(shù)的值。
試題解析:(1)∵,∴,
由題意,得,∴.①
∵有極值,故方程有兩個不等實根,
∴,∴.②
由①②可得, 或.
故實數(shù)的取僮范圍是.
(2)存在.
∵.令, .
,隨值的變化情況如下表:
+ | - | + | |||
↑ | 極大值 | ↓ | 極小值 | ↑ |
∴,∴或.
若,即,則(舍).
若,又,∴,∴,
∵,∴,∴,∴.
∴存在實數(shù),使得函數(shù)的極小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·泰安模擬)如圖,在正四棱柱ABCDA1B1C1D1中,E為AD的中點,F為B1C1的中點.
(1)求證:A1F∥平面ECC1;
(2)在CD上是否存在一點G,使BG⊥平面ECC1?若存在,請確定點G的位置,并證明你的結(jié)論,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線,以平面直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線.
(1)將曲線上的所有點的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的倍、2倍后得到曲線.試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;
(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓的極坐標(biāo)方程為: .若以極點為原點,極軸所在直線為軸建立平面直角坐標(biāo)系.
(Ⅰ)求圓的參數(shù)方程;
(Ⅱ)在直角坐標(biāo)系中,點是圓上動點,試求的最大值,并求出此時點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓: 的離心率為,過其右焦點與長軸垂直的直線與橢圓在第一象限相交于點, .
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的左頂點為,右頂點為,點是橢圓上的動點,且點與點, 不重合,直線與直線相交于點,直線與直線相交于點,求證:以線段為直徑的圓恒過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有極值,且在處的切線與直線垂直.
(1)求實數(shù)的取值范圍;
(2)是否存在實數(shù),使得函數(shù)的極小值為.若存在,求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸正半軸為極軸,建立極坐標(biāo)系,點的極坐標(biāo)為,直線的極坐標(biāo)方程為,且過點,曲線的參考方程為(為參數(shù)).
(1)求曲線上的點到直線的距離的最大值與最小值;
(2)過點與直線平行的直線與曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標(biāo)系中,圓的方程為.
(1)寫出直線的普通方程和圓的直角坐標(biāo)方程;
(2)設(shè)點,直線與圓相交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點為,準(zhǔn)線為,點在拋物線上,已知以點為圓心, 為半徑的圓交于兩點.
(Ⅰ)若, 的面積為4,求拋物線的方程;
(Ⅱ)若三點在同一條直線上,直線與平行,且與拋物線只有一個公共點,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com