已知?jiǎng)訄AP與定圓B:x2+y2+2x-35=0內(nèi)切,且動(dòng)圓經(jīng)過一定點(diǎn)A(1,0).
(1)求動(dòng)圓圓心P的軌跡方程;
(2)過點(diǎn)B(圓心)的直線與點(diǎn)P的軌跡交與M,N兩點(diǎn),求△AMN面積的最大值.
【答案】分析:(1)定圓B的圓心為B(-1,0),半徑r=6,因?yàn)閯?dòng)圓P與定圓B內(nèi)切,且動(dòng)圓P過定點(diǎn)A(1,0),所以|PA|+|PB|=6.由此能求出橢圓的方程.
(2)由題意設(shè)直線l的方程為my=x+1,與點(diǎn)P的軌跡方程聯(lián)立,得(8m2+9)y2-16my-64=0,設(shè)M(x1,y1),N(x2,y2),則,,,由此能求出△AMN面積的最大值.
解答:解:(1)定圓B的圓心為B(-1,0),半徑r=6,
因?yàn)閯?dòng)圓P與定圓B內(nèi)切,且動(dòng)圓P過定點(diǎn)A(1,0)
所以|PA|+|PB|=6.
所以動(dòng)圓圓心P的軌跡是以B、A為焦點(diǎn),長軸長為6的橢圓.
∴所求橢圓的方程為.(5分)
(2)由題意設(shè)直線l的方程為my=x+1,
與點(diǎn)P的軌跡方程聯(lián)立,得(8m2+9)y2-16my-64=0,
設(shè)M(x1,y1),N(x2,y2),
,,
,
,則m2=t2-1,

在[1,+∞)上單調(diào)遞增,
,
∴△AMN面積的最大值為
點(diǎn)評:本題考查橢圓方程的求法和三角形面積最大值的計(jì)算,解題時(shí)要認(rèn)真審題,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)訄AP與定圓B:x2+y2+2x-35=0內(nèi)切,且動(dòng)圓經(jīng)過一定點(diǎn)A(1,0).
(1)求動(dòng)圓圓心P的軌跡方程;
(2)過點(diǎn)B(圓心)的直線與點(diǎn)P的軌跡交與M,N兩點(diǎn),求△AMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

(汕頭聯(lián)考模擬)已知?jiǎng)訄AP與定圓B內(nèi)切,且動(dòng)圓P經(jīng)過一定點(diǎn)A(0)

(1)求動(dòng)圓圓心P的軌跡方程;

(2)若已知點(diǎn)D(0,3)M、N在動(dòng)圓P的軌跡上,且,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖南省四市九校2009屆高三第二次聯(lián)考數(shù)學(xué)試卷(文科數(shù)學(xué)) 題型:044

已知?jiǎng)訄AP與定圓B:x2+y2+2x-35=0內(nèi)切,且動(dòng)圓經(jīng)過一定點(diǎn)A(1,0).

(1)求動(dòng)圓圓心P的軌跡方程;

(2)過點(diǎn)B(圓心)的直線與點(diǎn)P的軌跡交與M,N兩點(diǎn),求⊿AMN面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知?jiǎng)訄AP與定圓B:x2+y2+2x-35=0內(nèi)切,且動(dòng)圓經(jīng)過一定點(diǎn)A(1,0).
(1)求動(dòng)圓圓心P的軌跡方程;
(2)過點(diǎn)B(圓心)的直線與點(diǎn)P的軌跡交與M,N兩點(diǎn),求△AMN面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案