函數(shù)f(x)=Asin(ωx+φ)+m(A>0,ω>0,|φ|<
π
2
)的最大值為4,最小值為0,兩條對(duì)稱軸間的距離為
π
2
,直線x=
π
6
是其圖象的一條對(duì)稱軸,則符合條件的解析式是
 
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì)
分析:由函數(shù)的最值求出A、m的值,由周期求出ω,由函數(shù)的圖象的對(duì)稱軸求出φ的值,可得函數(shù)的解析式.
解答: 解:由函數(shù)的最大值為4,最小值為0,可得m=
4+0
2
=2,A=4-2=2.
再由兩條對(duì)稱軸間的距離為
π
2
,可得
1
2
ω
=
π
2
,∴ω=2.
再根據(jù)直線x=
π
6
是其圖象的一條對(duì)稱軸,可得 2×
π
6
+φ=kπ+
π
2
,k∈z,
可得φ=
π
6
,故函數(shù)的解析式為 f(x)=2sin(2x+
π
6
)+2,
故答案為:f(x)=2sin(2x+
π
6
)+2
點(diǎn)評(píng):本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的最值求出A,由周期求出ω,由函數(shù)的圖象的對(duì)稱軸求出φ的值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某次游園的一項(xiàng)活動(dòng)中,設(shè)置了兩個(gè)中獎(jiǎng)方案:
方案1:在如圖所示的游戲盤內(nèi)轉(zhuǎn)動(dòng)一個(gè)小球,如果小球靜止時(shí)停在正方形區(qū)域內(nèi)則中獎(jiǎng);
方案2:從一個(gè)裝有2個(gè)紅球和3個(gè)白球的袋中無放回地取出2個(gè)球,當(dāng)兩個(gè)球同色時(shí)則中獎(jiǎng).
兩個(gè)方案中,哪個(gè)方案中獎(jiǎng)率更高?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果曲線y=x3+x-10的某一條切線與直線y=4x-3平行.求切點(diǎn)坐標(biāo)與切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)袋子中裝有大小形狀完全相同的編號(hào)分別為1,2,3,4,5的5個(gè)紅球與編號(hào)為1,2,3,4的4個(gè)白球,從中任意取出3個(gè)球.
(Ⅰ)從袋中任意取出3個(gè)球,求取出的3個(gè)球的編號(hào)為連續(xù)的自然數(shù)的概率;
(Ⅱ)記X為取出的3個(gè)球中編號(hào)的最大值,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)正三棱錐的底面邊長為6
3
,高為4,則這個(gè)正三棱錐的側(cè)面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果軸截面為正方形的圓柱的側(cè)面積是4π,那么圓柱的體積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:x+2ay-1=0與l2:(2a-1)x-ay-1=0平行,則a的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

6名學(xué)生報(bào)名參加數(shù)學(xué),計(jì)算機(jī),航模興趣小組,每人選報(bào)一項(xiàng),則不同的報(bào)名方式有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面幾何中,若DE是△ABC中平行于BC的中位線,則有S△ADE:S△ABC=1:4.把這個(gè)結(jié)論類比到空間:若三棱錐A-BCD有中截面EFG∥平面BCD,則VA-EFG:VA-BCD=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案