精英家教網 > 高中數學 > 題目詳情

已知雙曲線及點A(,0)。

   (1)求點A到雙曲線一條漸近線的距離;

   (2)已知點O為原點,點P在雙曲線上,△POA為直角三角形,求點P的坐標。

 

【答案】

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•松江區(qū)二模)已知雙曲線C的中心在原點,D(1,0)是它的一個頂點,
d
=(1,
2
)
是它的一條漸近線的一個方向向量.
(1)求雙曲線C的方程;
(2)若過點(-3,0)任意作一條直線與雙曲線C交于A,B兩點 (A,B都不同于點D),求證:
DA
DB
為定值;
(3)對于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點,M,N為雙曲線Γ上的兩點(都不同于點E),且EM⊥EN,那么直線MN是否過定點?若是,請求出此定點的坐標;若不是,說明理由.然后在以下三個情形中選擇一個,寫出類似結論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點;
情形二:拋物線y2=2px(p>0)及它的頂點;
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•昆明模擬)已知雙曲線E:
x2
a2
-
y2
b2
=1(a>0,b>0)
的漸近線與拋物線C:y=x2+1相切于第一象限內的點P.
(I)求點P的坐標及雙曲線E的離心率;
(II)記過點P的漸近線為l1,雙曲線的右焦點為F,過點F且垂直于l1的直線l2與雙曲線E交于A、B兩點.若l2與拋物線至多有一個公共點,求△PAB面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•昆明模擬)已知雙曲線E:
x2
a2
-
y2
b2
=1(a>0,b>0)
的漸近線與拋物線C:y=x2+1相切于第一象限內的點P.
(I)求點P的坐標及雙曲線E的離心率;
(II)記過點P的漸近線為l1,雙曲線的右焦點為F,過點F且垂直于l1的直線l2與雙曲線E交于A、B兩點.當△PAB的面積為
40
3
時,求雙曲線E的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線及點A(,0)。

   (1)求點A到雙曲線一條漸近線的距離;

   (2)已知點O為原點,點P在雙曲線上,△POA為直角三角形,求點P的坐標。

查看答案和解析>>

同步練習冊答案