【題目】定義在上的函數(shù)滿足,.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)如果、、滿足,那么稱比更靠近.當且時,試比較和哪個更靠近,并說明理由.
【答案】(1);
(2)當時,函數(shù)的單調(diào)遞增區(qū)間為;當時,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;
(3)比更靠近.
【解析】
試題分析:(1)兩邊求導,可建立關(guān)于,的方程組,求得其值,即可得到解析式;(2)求導,對的取值進行分類討論,即可得到結(jié)論;(3)設,,從而問題等價于,通過對的取值范圍進行分類討論,利用求導判斷單調(diào)性求極值,即可得到結(jié)論.
試題解析:(1),∴,即,又,∴,∴;(2)∵,
∴,
∴,①當時,,函數(shù)在上單調(diào)遞增,②當時,由得,∴時,,單調(diào)遞減;時,,單調(diào)遞增,綜上,當時,函數(shù)的單調(diào)遞增區(qū)間為;當時,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(3)設,,∵,∴在上為減函數(shù),又∵,
∴當時,,當時,,∵,,
∴在上為增函數(shù),又∵,∴時,,∴在上為增函數(shù),∴,①當時,,
設,則,∴在上為減函數(shù),
∴,∵,∴,∴,∴比更靠近,
②當時,,
設,則,,∴在時為減函數(shù),
∴,∴在時為減函數(shù),∴,
∴,∴比更靠近,綜上:在,時,比更靠近.
科目:高中數(shù)學 來源: 題型:
【題目】(題文)某研究小組在電腦上進行人工降雨模擬實驗,準備用A、B、C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其實驗數(shù)據(jù)統(tǒng)計如下:
方式 | 實施地點 | 大雨 | 中雨 | 小雨 | 模擬實驗總次數(shù) |
A | 甲 | 4次 | 6次 | 2次 | 12次 |
B | 乙 | 3次 | 6次 | 3次 | 12次 |
C | 丙 | 2次 | 2次 | 8次 | 12次 |
假定對甲、乙、丙三地實施的人工降雨彼此互不影響,請你根據(jù)人工降雨模擬實驗的統(tǒng)計數(shù)據(jù):
(1)求甲、乙、丙三地都恰為中雨的概率;
(2)考慮到旱情和水土流失,如果甲地恰需中雨即達到理想狀態(tài),乙地必須是大雨才達到理想狀態(tài),丙地只要是小雨或中雨即達到理想狀態(tài),記“甲、乙、丙三地中達到理想狀態(tài)的個數(shù)”為隨機變量ξ,求隨機變量ξ的分布列和均值E(ξ).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,曲線在點處的切線在兩坐標軸上的截距之和為,求的值;
(2)若對于任意的及任意的,總有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出定義:若(其中m為整數(shù)),則m叫做與實數(shù)x”親密的整數(shù)”記作{x}=m,在此基礎(chǔ)上給出下列關(guān)于函數(shù)的四個說法:
①函數(shù)在是增函數(shù);
②函數(shù)的圖象關(guān)于直線對稱;
③函數(shù)在上單調(diào)遞增
④當時,函數(shù)有兩個零點,
其中說法正確的序號是( )
A.①②③B.②③④C.①②④D.①③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某市效外景區(qū)內(nèi)一條筆直的公路經(jīng)過三個景點A、B、C.景區(qū)管委會又開發(fā)了風景優(yōu)美的景點D.經(jīng)測量景點D位于景點A的北偏東30°方向且距A 8 km處,且位于景點B的正北方向,還位于景點C的北偏西75°方向 上,已知AB=5 km,AD>BD.
(1)景區(qū)管委會準備由景點D向景點B修建一條筆直的公路,不考慮其他因素,求出這條公路的長;
(2)求∠ACD的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.
(1)當a=3時,求A∩B;
(2)若a>0,且A∩B=,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com