設(shè)圓O1和圓O2是兩個(gè)定圓,動(dòng)圓P與這兩個(gè)定圓都相切,則圓P的圓心軌跡不可能是(    )
A
設(shè)圓O1和圓O2的半徑分別是r1、r2,|O1O2|=2c,則一般地,圓P的圓心軌跡是焦點(diǎn)為O1O2,且離心率分別是的圓錐曲線(當(dāng)r1=r2時(shí),O1O2的中垂線是軌跡的一部份,當(dāng)c=0時(shí),軌跡是兩個(gè)同心圓)。
當(dāng)r1=r2r1+r2<2c時(shí),圓P的圓心軌跡如選項(xiàng)B;當(dāng)0<2c<|r1?r2|時(shí),圓P的圓心軌跡如選項(xiàng)C;當(dāng)r1r2r1+r2<2c時(shí),圓P的圓心軌跡如選項(xiàng)D。由于選項(xiàng)A中的橢圓和雙曲線的焦點(diǎn)不重合,因此圓P的圓心軌跡不可能是選項(xiàng)A。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)在以兩坐標(biāo)軸為對(duì)稱(chēng)軸的橢圓上,你能根據(jù)點(diǎn)的坐標(biāo)最多寫(xiě)出橢圓上幾個(gè)點(diǎn)的坐標(biāo)(點(diǎn)除外)?這幾個(gè)點(diǎn)的坐標(biāo)是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

兩條直線,分別過(guò)點(diǎn),為常數(shù)),且分別繞,旋轉(zhuǎn),它們分別交軸于,,為參數(shù)),若,求兩直線交點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線,過(guò)點(diǎn)作一直線交拋物線于兩點(diǎn),試求弦中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是長(zhǎng)軸為4的橢圓上的三點(diǎn),點(diǎn)是長(zhǎng)軸的一個(gè)頂點(diǎn),過(guò)橢圓中心 (如圖),且,
(I)求橢圓的方程;
(Ⅱ)如果橢圓上的兩點(diǎn),使的平分線垂直于,是否總存在實(shí)數(shù),使。請(qǐng)給出證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)在直角坐標(biāo)平面中,△的兩個(gè)頂點(diǎn)的坐標(biāo)分別為,平面內(nèi)兩點(diǎn)同時(shí)滿足下列條件:①=0;②;③(1)求△的頂點(diǎn)的軌跡方程;(2)過(guò)點(diǎn)直線與(1)中軌跡交于不同的兩點(diǎn),求△面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)如圖所示,F1F2是雙曲線x2y2 = 1的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),

O是以F­1F2為直徑的圓,直線ly = kx + b與圓O相切,并與雙曲線交于A、B兩點(diǎn).
(Ⅰ)根據(jù)條件求出bk的關(guān)系式;
(Ⅱ)當(dāng),且滿足2≤m≤4時(shí),
求△AOB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求橢圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(陜西理,4)過(guò)原點(diǎn)且傾斜角為的直線被圓學(xué)所截得的弦長(zhǎng)為科網(wǎng)
A.B.2C.D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案