解答:
解:(1)函數(shù)y=f(x)為奇函數(shù).
當(dāng)a=0時,f(x)=x|x|+2x,
∴f(-x)=-x|x|-2x=-f(x),
∴函數(shù)y=f(x)為奇函數(shù);
(2)f(x)=
| x2+(2-2a)x, | x≥2a | -x2+(2+2a)x, | x<2a |
| |
,
當(dāng)x≥2a時,f(x)的對稱軸為:x=a-1;
當(dāng)x<2a時,y=f(x)的對稱軸為:x=a+1;
∴當(dāng)a-1≤2a≤a+1時,f(x)在R上是增函數(shù),
即-1≤a≤1時,函數(shù)f(x)在R上是增函數(shù);
(3)①當(dāng)-1≤a≤1時,函數(shù)f(x)在R上是增函數(shù),此時函數(shù)y=f(x)在區(qū)間[1,2]上的最大值為f(2)=4+2|4a-2|.
②當(dāng)a>1時,即2a>a+1>a-1,
f(x)在(-∞,a+1)上單調(diào)增,在(a+1,2a)上單調(diào)減,在(2a,+∞)上單調(diào)增,此時函數(shù)y=f(x)在區(qū)間[1,2]上的最大值為f(2)=4+2|4a-2|
③當(dāng)a<-1時,即2a<a-1<a+1,
f(x)在(-∞,2a)上單調(diào)增,在(2a,a-1)上單調(diào)減,在(a-1,+∞)上單調(diào)增,
此時函數(shù)y=f(x)在區(qū)間[1,2]上的最大值為f(2)=4+2|4a-2|.