甲乙兩地相距400千米,汽車(chē)從甲地勻速行駛到乙地,速度不得超過(guò)100千米/小時(shí),已知該汽車(chē)每小時(shí)的運(yùn)輸成本P(元)關(guān)于速度v(千米/小時(shí))的函數(shù)關(guān)系是P=
1
19200
v4-
1
160
v3+15v,
(1)求全程運(yùn)輸成本Q(元)關(guān)于速度v的函數(shù)關(guān)系式;
(2)為使全程運(yùn)輸成本最少,汽車(chē)應(yīng)以多少速度行駛?并求此時(shí)運(yùn)輸成本的最小值.
(1)Q=P•
400
v
=(
1
19200
v4-
1
160
v3+15v)•
400
v

=(
1
19200
v3-
1
160
v2+15)•400
=
v3
48
-
5
2
v2+6000(0<v≤100).
(2)Q′=
v2
16
-5v,
令Q′=0,則v=0(舍去)或v=80,
當(dāng)0<v<80時(shí),Q′<0.
當(dāng)80<v≤100時(shí),Q′>0.
∴v=80時(shí),全程運(yùn)輸成本取得極小值,即最小值.
從而Qmin=Q(80)=
2000
3
元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲乙兩地相距400千米,汽車(chē)從甲地勻速行駛到乙地,速度不得超過(guò)100千米/小時(shí),已知該汽車(chē)每小時(shí)的運(yùn)輸成本P(元)關(guān)于速度v(千米/小時(shí))的函數(shù)關(guān)系是P=
1
19200
v4-
1
160
v3+15v,
(1)求全程運(yùn)輸成本Q(元)關(guān)于速度v的函數(shù)關(guān)系式;
(2)為使全程運(yùn)輸成本最少,汽車(chē)應(yīng)以多少速度行駛?并求此時(shí)運(yùn)輸成本的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年《龍門(mén)亮劍》高三數(shù)學(xué)(理科)一輪復(fù)習(xí):第2章第10節(jié)(人教AB通用)(解析版) 題型:解答題

甲乙兩地相距400千米,汽車(chē)從甲地勻速行駛到乙地,速度不得超過(guò)100千米/小時(shí),已知該汽車(chē)每小時(shí)的運(yùn)輸成本P(元)關(guān)于速度v(千米/小時(shí))的函數(shù)關(guān)系是P=v4-v3+15v,
(1)求全程運(yùn)輸成本Q(元)關(guān)于速度v的函數(shù)關(guān)系式;
(2)為使全程運(yùn)輸成本最少,汽車(chē)應(yīng)以多少速度行駛?并求此時(shí)運(yùn)輸成本的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲乙兩地相距400千米,汽車(chē)從甲地勻速行駛到乙地,速度不得超過(guò)100千米/小時(shí),已知該汽車(chē)每小時(shí)的運(yùn)輸成本P(元)關(guān)于速度(千米/小時(shí))的函數(shù)關(guān)系是,

(Ⅰ)求全程運(yùn)輸成本Q(元)關(guān)于速度的函數(shù)關(guān)系式;

(Ⅱ)為使全程運(yùn)輸成本最少,汽車(chē)應(yīng)以多大速度行駛?并求此時(shí)運(yùn)輸成本的最小值。

查看答案和解析>>

同步練習(xí)冊(cè)答案