【題目】已知直線y=k(x+3)(k>0)與拋物線C:y2=12x相交于A,B兩點(diǎn),FC的焦點(diǎn),|FA|=3|FB|,k的值等于_____.

【答案】

【解析】

設(shè)A(x1,y1),B(x2,y2).聯(lián)立方程化為k2x2+(6k2-12)x+9k2=0,(k>0).根據(jù)根與系數(shù)的關(guān)系,利用拋物線的定義可得:|FA|=x1+3,|FB|=x2+3,利用|FA|=3|FB|,聯(lián)立解出即可

設(shè)A(x1,y1),B(x2,y2).易知F(3,0)

聯(lián)立直線y=k(x+3)(k>0)與拋物線C:y2=12x,

化為k2x2+(6k2-12)x+9k2=0,(k>0).

∴x1+x2=-6 ①,x1x2=9 ②.

∵|FA|=3|FB|,根據(jù)拋物線的定義,可得 |FA|=x1+3,|FB|=x2+3,

∴x1+3=3(x2+3)③,化為x1=3x2+6.

聯(lián)立①②③,解得k=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=xcosx2在區(qū)間[0,4]上的零點(diǎn)個數(shù)為(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生社團(tuán)對本校學(xué)生學(xué)習(xí)方法開展問卷調(diào)查的過程中發(fā)現(xiàn),在回收上來的1000份有效問卷中,同學(xué)們背英語單詞的時間安排有兩種:白天背和晚上臨睡前背。為研究背單詞時間安排對記憶效果的影響,該社團(tuán)以5%的比例對這1000名學(xué)生按時間安排進(jìn)行分層抽樣,并完成一項(xiàng)試驗(yàn),試驗(yàn)方法是:使兩組學(xué)生記憶40個無意義音節(jié)(如xiq,geh),均要求剛能全部記清就停止識記,并在8小時后進(jìn)行記憶測驗(yàn)。不同的是,甲組同學(xué)識記結(jié)束后一直不睡覺,8小時后測驗(yàn);乙組同學(xué)識記停止后立刻睡覺,8小時后叫醒測驗(yàn)。兩組同學(xué)識記停止8小時后的準(zhǔn)確回憶(保持)情況如圖(區(qū)間含左端點(diǎn)不含右端點(diǎn))。

(1)估計(jì)1000名被調(diào)查的學(xué)生中識記停止8小時后40個音節(jié)的保持率大于或等于60%的人數(shù);

(2)從乙組準(zhǔn)確回憶個數(shù)在范圍內(nèi)的學(xué)生中隨機(jī)選3人,記:能準(zhǔn)確回憶20個以上(含20)的人數(shù)為隨機(jī)變量X,求X的分布列及數(shù)學(xué)期望;

(3)從本次試驗(yàn)的結(jié)果來看,上述兩種時間安排方法中哪種方法背英語單詞記憶效果更好?計(jì)算并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p3+q3=2,求證:p+q≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,E是棱DD1的中點(diǎn).

(1)求直線BE與平面ABB1A1所成的角的正弦值;
(2)在棱C1D1上是否存在一點(diǎn)F,使B1F∥平面A1BE?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓M的對稱軸為坐標(biāo)軸,離心率為,且一個焦點(diǎn)坐標(biāo)為(,0).

(1)求橢圓M的方程;

(2)設(shè)直線l與橢圓M相交于A,B兩點(diǎn),以線段OA,OB為鄰邊作平行四邊形OAPB,其中點(diǎn)P在橢圓M,O為坐標(biāo)原點(diǎn),求點(diǎn)O到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex[ x3﹣2x2+(a+4)x﹣2a﹣4],其中a∈R,e為自然對數(shù)的底數(shù).
(1)若函數(shù)f(x)的圖象在x=0處的切線與直線x+y=0垂直,求a的值;
(2)關(guān)于x的不等式f(x)<﹣ ex在(﹣∞,2)上恒成立,求a的取值范圍;
(3)討論函數(shù)f(x)極值點(diǎn)的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠A,B,C的對邊分別為, , ,若,

(1)求∠B的大;

(2) ,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知圓C的圓心C( , ),半徑r=
(1)求圓C的極坐標(biāo)方程;
(2)若α∈[0, ),直線l的參數(shù)方程為 (t為參數(shù)),直線l交圓C于A、B兩點(diǎn),求弦長|AB|的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案