已知函數(shù).
(1)求的極值;
(2)當(dāng)時(shí),求的值域;
(3)設(shè),函數(shù),若對(duì)于任意,總存在,使得成立,求的取值范圍.
(1),無(wú)極小值(2)(3)
【解析】
試題分析:⑴,令,解得: (舍)或
當(dāng)時(shí),;當(dāng)時(shí),,
,無(wú)極小值.
⑵由⑴知在區(qū)間單調(diào)遞增,在區(qū)間的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013082813095451314080/SYS201308281313041670899267_DA.files/image015.png">,即.
⑶且,當(dāng)時(shí),在區(qū)間單調(diào)遞減,在區(qū)間的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013082813095451314080/SYS201308281313041670899267_DA.files/image022.png">,即.
又對(duì)于任意,總存在,使得成立在區(qū)間的值域在區(qū)間的值域,即,
,解得:.
考點(diǎn):函數(shù)極值最值
點(diǎn)評(píng):求函數(shù)極值最值的步驟:函數(shù)在定義域內(nèi)求導(dǎo)數(shù),取導(dǎo)數(shù)等于零得到極值點(diǎn),判定極值點(diǎn)兩側(cè)附近函數(shù)的單調(diào)性從而確定是極大值還是極小值,求出區(qū)間端點(diǎn)處函數(shù)值與極值比較可得出最值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014屆山東省臨沂市高三9月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(1)求函數(shù)的定義域 ;
(2)若函數(shù)的最小值為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年人教版高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年上海市奉賢區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省高二下期中數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)令
(1)求的定義域;
(2)判斷函數(shù)的奇偶性,并予以證明;
(3)若,猜想之間的關(guān)系并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市高三入學(xué)測(cè)試數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)
已知函數(shù) ,
(1)求函數(shù)的定義域;(2)證明:是偶函數(shù);
(3)若,求的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com