用不過球心O的平面截球O,截面是一個球的小圓O1,若球的半徑為5cm,球心O與小圓圓心O1的距離為3cm,則小圓半徑為
 
cm.
考點:球的體積和表面積
專題:空間位置關系與距離
分析:由球半徑R,球心距d,截面圓r,構成直角三角形,滿足勾股定理,結合已知,可得答案.
解答: 解:∵球的半徑R=5cm,球心O與小圓圓心O1的距離d=3cm,
∴小圓半徑r=
R2-d2
=
52-32
=4,
故小圓半徑為4cm,
故答案為:4
點評:本題考查的知識點是球的幾何特征,正確理解球半徑R,球心距d,截面圓r,構成直角三角形,滿足勾股定理,是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

過點M(1,1)斜率為-
1
2
的直線與橢圓交于A、B兩點,若M為AB中點,則e=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設條件p:
x-1
x+2
≥0條件(x-1)(x+2)≥0.則p是q的( 。
A、充要條件
B、必要不充分條件
C、充分不必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

PA⊥平面ABC,∠ACB=90°且PA=AC=BC=1,則異面直線PB與AC所成角的正切值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)z滿足
1-i
z
=i,則z=( 。
A、-iB、i
C、1-iD、-1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設兩個向量
m
n
滿足||
m
|=2,|
n
|=1,
m
,
n
的夾角為60°.
(Ⅰ)求向量
m
-
n
m
的夾角θ;
(Ⅱ)當向量2λ
m
+7
n
與向量
m
+λ
n
垂直時,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:|M+1|≤2成立.命題q:方程x2-2mx+1=0有實數(shù)根.若¬p為假命題,p∧q為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐A-BCD中,三條側棱AB,AC,AD兩兩垂直,AB=AC=AD=6,P,Q分別是側面ABC和棱AD上動點,PQ=4,M為線段PQ中點,當P,Q運動時,點M的軌跡把三棱錐A-BCD分成上、下兩部分的體積之比等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知,向量
a
=(cosθ,sinθ),向量
b
=(
2
,-1).
(1)
a
b
且0≤θ≤π,求sin2θ的值;
(2)f(θ)=|
a
-
b
|2,若f(θ)≤m對θ∈R恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案